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Abstract. In [21] Maria I. Sessa extended the SLD resolution principle
with the ability of performing approximate reasoning and flexible query
answering. The operational mechanism of similarity-based SLD resolu-
tion can be used as the basis for a new logic language that allows to
manage uncertain and imprecise information in a declarative framework,
hence its importance. Similarity-based SLD resolution can be seen as an
extension of the classical SLD resolution procedure where the syntactic
unification algorithm has been replaced by a fuzzy unification algorithm.

In this paper we address the problem of adapting the implementation of
a WAM to incorporate fuzzy unification. As a result, we obtain a Prolog
implementation based on similarity relations that we call S-Prolog. To
the best of our knowledge this is the first WAM implementation that
supports similarity-based SLD resolution.

Keywords: Fuzzy Logic, Fuzzy Prolog, Unification by Similarity, War-
ren Abstract Machine.

1 Introduction

Fuzzy Logic relays on the concept of fuzzy set [25, 26] and can be seen as an
extension of classical predicate logic able to model uncertainty and/or vague-
ness. During the last decades fuzzy Logic has proved its usefulness in a number
of practical applications (such as control systems, database or expert systems)
where the management of imprecise information is mandatory. A comprehensive
introduction to the subject of fuzzy Logic can be found in [19].

Fuzzy Logic Programming integrates fuzzy logic and pure logic programming
[14], in order to provide these languages with the ability of dealing with uncer-
tainty and approximated reasoning. One of the main advantages of this com-
bination is the construction of programming languages that allow us to deal
with imprecise information by using declarative techniques. It is important to
say that there is no common method for introducing fuzzy concepts into logic
programming. We have found two major approaches:
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– The first approach, replaces the syntactic unification mechanism of classical
SLD–resolution by a weak unification algorithm, based on similarity rela-
tions. This algorithm provides a weak most general unifier as well as a nu-
merical value, called the unification degree. Intuitively, the unification degree
represents the truth degree associated with the (query) computed instance.
Programs written in this kind of languages consist, in essence, in a set of
ordinary (Prolog) clauses jointly with a set of “similarity equations” which
play an important role during the unification process. Examples of this kind
of languages are described in [4–7] and [21].

– In the second approach, programs are considered fuzzy subsets of (clausal)
formulas, where the truth degree of each clause is explicitly annotated. The
work of computing and propagating truth degrees relies on an extension
of the resolution principle, whereas the (syntactic) unification mechanism
remains untouched. Examples of this kind of languages are described in [8–
10, 12, 13, 3, 16–18, 23] and [22].

In this paper we are interested in the implementation of the first class of fuzzy
logic languages.

We follow the conceptual approach introduced in [21] where the notion of
“approximation” is managed at a syntactic level by means of similarity relations.
A similarity relation is an extension of the crisp notion of equivalence relation and
it can be useful in any context where the concept of equality must be weakened.
In [21] a new modified version of the SLD resolution procedure, named similarity-
based SLD, is defined. Roughly speaking the similarity-based SLD resolution
principle works as it is shown by the following example (adapted from [21]).

Example 1. Assume a database storing information on books, including readers
preferences and some subjective information concerning the similarity between
some syntactic entities. Then it is possible to perform an inference reasoning
step where the antecedent of a conditional formula is allowed to match with
some premise only approximately.

if x is a mystery book then x is a good one;
dracula is a horror book;
horror is similar to mystery with degree 0.9
dracula is a good book with degree 0.9

Since horror is similar to mystery with a certainty/truth degree of 0.9, also
the conclusion will be affected by the similarity degree assigned to the relation
between horror and mystery.

In this paper we are interested in the implementation of a fuzzy logic lan-
guage that follows this inference scheme. More precisely, our goal is to incor-
porate the Sessa’s similarity-based SLD resolution principle into the core of a
Warren Abstract Machine (WAM) [24]. As a result, we obtain a Prolog imple-
mentation based on similarity relations that we call S-Prolog. The WAM is a
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virtual computer that aids in the compilation and implementation of the Prolog
programming language and offers techniques for compiling symbolic languages
that can be generalized beyond Prolog. A tutorial reconstruction for the WAM
can be found in [1].

The structure of the paper is as follows. Basic definitions are given in Section
2. Section 3 recalls the definition of the similarity-based SLD resolution principle.
In Section 4, the syntax and semantics of the S-Prolog language is described.
Section 5 presents the main features of the Similarity WAM machine: we de-
scribed the structure and behavior of the compiler and virtual machine as well
as the implementation details related with the introduction of weak unification.
To illustrate the compilation process a concrete example is shown in Subsection
5.4. Also, in Section 6, we give a formalization of the Similarity WAM Machine
operational semantics and we demonstrate its equivalence with Sessa’s Weak
SLD resolution rule. Finally, in Section 7 we give our conclusions and some lines
of future research.

In the following, we assume familiarity with the theory and practice of logic
programming [2].

2 Similarity Relations and Unification by Similarity

In this section we present the weak unification algorithm of [21], where the
syntactical identity between symbols is replaced by a test on a similarity relation.
Before giving a formal definition of the weak unification procedure we need to
remember some preliminary concepts.

2.1 Similarity relations

Given a set U , an ordinary subset A of U can be defined in terms of its character-
istic function χA(x) (that returns 1 if x ∈ A or 0 otherwise). On the other hand,
a fuzzy subset A of U is a function A : U → [0, 1]. The function A is called the
membership function, and the value A(x) represents the degree of membership
of x in the fuzzy subset A, being a generalization of the notion of characteristic
function. Similarly, an ordinary binary relation on U is a subset of U × U and
it can be identified by its characteristic function U ×U → {0, 1}. Therefore, the
easy extension of this concept to the fuzzy case is to agree that, a fuzzy binary
relation is a fuzzy subset on U × U (that is, a mapping U × U → [0, 1]).

Definition 1. A similarity relation on a set U is a fuzzy binary relation on
U × U , R : U × U → [0, 1], holding the following properties:

1. (Reflexive) R(x, x) = 1 for any x ∈ U ;
2. (Symmetric) R(x, y) = R(y, x) for any x, y ∈ U ;
3. (Transitive) R(x, z) ≥ R(x, y)4R(y, x) for any x, y, z ∈ U ;

where the operator ‘4’ is an arbitrary t-norm1.
1 A t-norm 4 : [0, 1] × [0, 1] → [0, 1] is a binary operator which is commutative,

associative, monotone in both arguments and x41 = x (hence, it subsumes the
classical two-valued conjunction operator) [20].
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In [19], when the operator4 = ∧ (that is, it is the minimum of two elements),
similarity relations are called fuzzy equivalence relations. Certainly, in this case,
there exits a close relation between similarity relations and equivalence relations.

Definition 2. Let U be a set and R : U × U → [0, 1] be a similarity relation.
The binary relation ≡R,λ on U defined as ≡R,λ= {(x, y) | R(x, y) ≥ λ} is called
the λ-cut of R.

Proposition 1. [19] Let U be a set and R : U×U → [0, 1] be a fuzzy equivalence
relation. For any λ, the λ-cut of R, ≡R,λ, is an equivalence relation.

Since an equivalence relation ≡R,λ can be considered as a generalization of the
identity relation, intuitively, a fuzzy equivalence on a set specifies when two
elements may be considered equal with regard to a property that is not sharply
defined.

Following [21], in the sequel, we restrict ourself to similarity relations that
are fuzzy equivalence relations. Moreover we are interested in fuzzy equivalence
relations at a syntactic level.

2.2 Similarity relations on syntactic domains

In classical Logic Programming different syntactic symbols represent distinct
information. This restriction can be relaxed by introducing a similarity relation
R on the alphabet of a first order language, allowing R to provide a possible
non-zero value for function/predicate symbols with the same arity, whereas it is
the identity relation for variables.

The similarity relation R on the alphabet of a first order language can be
extended to terms and atomic formulas by structural induction in the usual way:

1. Let f and g be two n-ary function symbols and let t1, . . . , tn, s1, . . . , sn be
terms. R(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧ (

∧n
i=1R(ti, si));

2. Let p and q be two n-ary predicate symbols and let t1, . . . , tn, s1, . . . , sn

be terms. R(p(t1, . . . , tn), q(s1, . . . , sn)) = R(p, q) ∧ (
∧n

i=1R(ti, si)).

2.3 Unification by similarity

In presence of similarity relations on syntactic domains, it is possible to define
an extended notion of a unifier and a more general unifier of two expressions2.

Definition 3. Let R be a similarity relation and E1 and E2 be two expressions.
The substitution θ is a weak unifier of E1 and E2 w.r.t R if its unification degree,
νR(θ(E1), θ(E1)), defined as νR(θ(E1), θ(E1)) = R(θ(E1), θ(E1)), is greater than
zero. When the unification degree νR(θ(E1), θ(E1)) = λ > 0 we also say that θ is
a λ-unifier of E1 and E2.
2 We mean by “expression” a first order term or an atomic formula.
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Definition 4. Let R be a similarity relation. The substitution θ is more general
than the substitution σ with level λ, denoted by θ ≤R,λ σ, if there exist a substitu-
tion δ such that, for any variable x in the domain of θ or σ, R(σ(x), δ◦σ(x)) ≥ λ
(that is, σ(x) ≡R,λ δ ◦ σ(x)).

Definition 5. Let R be a similarity relation and E1 and E2 two expressions.
The substitution θ is a weak more general unifier (w.m.g.u.) of E1 and E2 w.r.t
R, denoted by wmgu(E1, E2), if:

1. θ is a λ-unifier of E1 and E2; and
2. θ ≤R,λ σ, for any λ-unifier σ of E1 and E2.

The weak unification algorithm we are going to present is a reformulation of
the one appeared in [21], with the advantage of a clearer operational reading. It
is an extension of Martelli and Montanari’s unification algorithm for syntactic
unification [2, 11, 15] and it is based in the following observation: The task of
obtaining a w.m.g.u of two expressions E1 = f(t1, . . . , tn) and E2 = g(s1, . . . , sn)
with R(f, g) = α > 0, where R is a similarity relation, is not a failure but
it is equivalent to solve the (initial) set of equations G = {t1 ∼ s1, . . . , tn ∼
sn} coupled with the similarity degree α. Here, the symbol “∼” represents the
possibility that the arguments in E1 and E2 be equals by similarity.

The weak unification algorithm is formalized as a transition system based on
a similarity-based unification relation “⇒”. The unification of the expressions
E1 and E2 is obtained by a state transformation sequence starting from an initial
state 〈G, id, α〉, where id is the identity substitution:

〈G, id, α〉 ⇒ 〈G1, θ1, α1〉 ⇒ 〈G2, θ2, α2〉 ⇒ . . .⇒ 〈Gn, θn, αn〉.

When the final state 〈Gn, θn, αn〉, with Gn = ∅, is reached (i.e., the equations
in the initial state have been solved), the expressions E1 and E2 are unifiable
by similarity with w.m.g.u. θn and unification degree αn. Therefore, the final
state 〈∅, θn, αn〉 signals out the unification success. On the other hand, when
expressions E1 and E2 are not unifiable, the state transformation sequence ends
with failure (i.e., Gn = Fail).

The next definition provides the set of rules defining the similarity-based
unification relation “⇒”.

Definition 6 (similarity-based unification relation). Let R be a similarity
relation. The similarity-based unification relation, “⇒”, is the smallest relation
defined by the following set of transition rules:

1. Term decomposition:

〈{f(t1, . . . , tn) ∼ f(s1, . . . , sn)} ∪ E, θ, α〉
〈{t1 ∼ s1, . . . , tn ∼ sn} ∪ E, θ, α〉

2. Term decomposition by similarity:

〈{f(t1, . . . , tn) ∼ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = β > 0
〈{t1 ∼ s1, . . . , tn ∼ sn} ∪ E, θ, (α ∧ β)〉
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3. Removal of trivial equations:

〈{X ∼ X} ∪ E, θ, α〉
〈E, θ, α〉

4. Swap:

〈{t ∼ X} ∪ E, θ, α〉
〈{X ∼ t} ∪ E, θ, α〉

, if t is not a variable.

5. Variable elimination:
〈{X ∼ t} ∪ E, θ, α〉

〈{X/t}(E), {X/t} ◦ θ, α〉
, if the variable X does not occur

in t.

6. Failure rule:

〈{f(t1, . . . , tn) ∼ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = 0
〈Fail, θ, α〉

7. Occur check:

〈{X = t} ∪ E, θ, α〉
〈Fail, θ, α〉

, if the variable X does occur in t.

In the rules above, E denotes a set of (remaining) equational goals in the pre-
ceding state.

Note that, when the similarity relation R is the diagonal relation3, the new
algorithm conforms with the classical unification algorithm. Note also that, case
2 subsumes case 1, since by definition of similarity relation R(a, a) = 1, for any
symbol in the alphabet, however we let case 1 by efficiency reasons.

In general, the weak unification algorithm allows us to check if a set of ex-
pressions S = {E1 ∼ E ′1, . . . , En ∼ E ′n} is weak unifiable. The w.m.g.u. of the set
S is denoted by wmgu(S). The following example illustrates the behavior of the
weak unification algorithm.

Example 2. Let R be a similarity relation such that R(p, q) = 0.6, R(b, d) = 0.3,
R(e, c) = 0.4 and R(r, s) = 0.5. In order to determine whether the set S =
{p(X, Y, b) ∼ q(a, b, d), r(Z, e) ∼ s(T, c)} is unifiable by similarity, we proceed as
follows:

1. We build the initial state configuration:

〈{p(X, Y, b) ∼ q(a, b, d), r(Z, e) ∼ s(T, c)}, id, 1〉

3 That is,R(a, a) = 1 andR(a, b) = 0 (being a and b distinct symbols in the alphabet).
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2. Then, we apply the unification rules in Definition 6, until a success or fail
state is reached:

〈{p(X, Y, b) ∼ q(a, b, d), r(Z, e) ∼ s(T, c)}, id, 1〉 ⇒2

〈{X ∼ a, Y ∼ b, b ∼ d, r(Z, e) ∼ s(T, c)}, id, 0.6〉 ⇒5

〈{Y ∼ b, b ∼ d, r(Z, e) ∼ s(T, c)}, {X/a}, 0.6〉 ⇒5

〈{b ∼ d, r(Z, e) ∼ s(T, c)}, {X/a, Y/b}, 0.6〉 ⇒2

〈{r(Z, e) ∼ s(T, c)}, {X/a, Y/b}, 0.3〉 ⇒2

〈{Z ∼ T, e ∼ c}, {X/a, Y/b}, 0.3〉 ⇒5

〈{e ∼ c}, {X/a, Y/b, Z/T}, 0.3〉 ⇒2

〈{}, {X/a, Y/b, Z/T}, 0.3〉

Since the final state is a successful configuration, the initial set of equational
goals S is unifiable with w.m.g.u. {X/a, Y/b, Z/T} and unification degree 0.3.

Given a similarity relation R on a first order alphabet, it is possible to prove
that if θ = {x1/t1, . . . , xn/tn} is a w.m.g.u. of two expressions E1 and E2, with
unification degree λ, then whatever substitution θ′ = {x1/s1, . . . , xn/sn}, hold-
ing that si ≡R,λ ti, for any 1 ≤ i ≤ n, is also a w.m.g.u. of E1 and E2 with
unification degree λ. Therefore, the weak unification algorithm computes a rep-
resentative of a w.m.g.u. class.

3 Similarity-Based SLD Resolution

Let Π be a set of Horn clauses and R a similarity relation on the first order
alphabet induced by Π. We define Weak SLD (WSLD) resolution as a transition
system 〈E,=⇒WSLD〉 where E is a set of triples 〈G, θ, α〉 (goal, substitution,
approximation degree), that we call the state of a computation, and whose tran-
sition relation =⇒WSLD⊆ (E × E) is the smallest relation which satisfies:

C = (A ←Q) << Π, σ = wmgu(A,A′) 6= fail, λ = νR(σ(A),σ(A′))
〈(←A′,Q′), θ, α〉 =⇒WSLD 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

where Q, Q′ are conjunctions of atoms and the notation “C << Π” is representing
that C is a standardized apart clause in Π.

A WSLD derivation for Π ∪ {G0} is a sequence of steps

〈G0, id, 1〉 =⇒WSLD 〈G1, θ1, λ1〉 =⇒WSLD . . . =⇒WSLD 〈Gn, θn, λn〉.

And a WSLD refutation is a WSLD derivation 〈G0, id, 1〉 =⇒WSLD
∗ 〈2, σ, λ〉,

where σ is a computed answer and λ is its approximation degree. Certainly,
a WSLD refutation computes a family of answers, in the sense that, if σ =
{x1/t1, . . . , xn/tn} then whatever substitution θ′ = {x1/s1, . . . , xn/sn}, holding
that si ≡R,λ ti, for any 1 ≤ i ≤ n, is also a computed answer with approximation
degree λ.
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4 S-Prolog: Syntax and Semantics

The language we call S-Prolog is an extension of the pure Prolog language with
a similarity relation defined on a syntactic domain. Therefore, the syntax of the
extended language is easy. It is just the Prolog syntax but enriched with a built-
in symbol “∼” used for describing similarity relations by means of similarity
equations of the form:

<alphabet symbol> ~ <alphabet symbol> = <similarity degree>

meaning that two constants, n-ary function symbols or n-ary predicate symbols
are similar with a certain degree. More precisely, we use the built-in symbol
“∼” as a compressed notation for the symmetric closure of an arbitrary fuzzy
binary relation R (that is, a similarity equation a ∼ b = α can be understood
in both directions: a is similar to b and b is similar to a with degree α). The
user can supply an initial subset of similarity equations and then, the system
generates a reflexive and transitive closure to obtain a similarity relation. Hence,
a S-Prolog program is a sequence of Prolog facts and rules followed by a sequence
of similarity equations.

Example 3. This S-Prolog program fragment specify features and preferences on
books stored in a data base. The preferences are specified by means of similarity
equations4:

% FACTS
adventures(treasure_island).
adventures(the_call_of_the_wild).
mystery(the_murders_in_the_rue_morgue).
horror(dracula).
science_fiction(the_city_and_the_stars).
science_fiction(the_martian_chronicles).

% RULES
good(X) :- interesting(X).

% SIMILARITY EQUATIONS
% Direct connections
adventures ~ mystery = 0.5
adventures ~ science_fiction = 0.8
adventures ~ interesting = 0.9
mystery ~ horror = 0.9
mystery ~ science_fiction = 0.5
science_fiction ~ horror = 0.5

% Transitive connections

4 In order to facilitate later discussions, we explicitly give the similarity equations that
complete the transitive closure of the initial fuzzy binary relation.
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adventures ~ horror = 0.5
mystery ~ interesting = 0.5
interesting ~ horror = 0.5
science_fiction ~ interesting = 0.8

The operational semantics of S-Prolog conforms with the similarity-based
SLD principle [21] as it is defined in Section 3. Therefore, S-Prolog computes
answers as well as approximation degrees.

5 The Similarity WAM Machine

In this section we present the main features of the Similarity WAM machine
(SWAM), a virtual machine for executing S-Prolog programs. Roughly speaking,
it is an adaptation of the classical WAM, as described in [1], able to execute
a Prolog program in the context of a similarity relation defined on the first
order alphabet induced by that program. As we shall show, the SWAM uses an
operational mechanism that conforms the weak SLD principle.

5.1 Structure and behavior of the machine

The structure of the S-Prolog compiler is depicted in Figure 1, being the SWAM
machine the basis for the compiler implementation. The Analyzer performs a
syntactical analysis and, at the same time, it translates the source program
into an internal representation. The Adapter takes that internal representation
and it obtains some auxiliary representations that facilitate the code generation
task. The Code Generator produces the machine code associated to the source
program. All these phases, except the one related with the Adapter, have been
implemented following standard techniques described in [1].

Once the machine code is generated, it is stored in the Code Area, an address-
able array of memory words. One or more memory words may contain a possibly
labeled instruction consisting of an operation code followed by operands. Labels
are symbolic entry points into the Code Area which are used by control instruc-
tions to alter the standard sequential execution order of machine instructions.
Additionally, multi-labels are also used with other purposes, such as to guide
some stages of the weak unification process (see below in the next section and
Section 5.4). On the other hand, the similarity relation is stored into the Simi-
larity Matrix memory area and its information is used: i) at compilation time, by
the Adapter (see Section 5.3). ii) at execution time, when it is necessary during
the unification process. An array of memory cells, which is called the Heap, is
used to represent atoms and terms internally. Explicit tags are used to distin-
guish variables from other sort of structures. The allocation of structures in the
Heap is started by the execution of the machine code instructions obtained when
the query is compiled. The Stack stores control information. It contains proce-
dure activation frames, called environments, as well as choice point frames. Since
the size of these frames is variable, the stack is organized as a linked list. The
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Fig. 1. S-Prolog compiler structure and SWAM structure

Trail maintains a record of those variables that need to be reset to “unbound”
upon backtracking. It is represented by an array which is managed as a stack.
Registers are pointers to the arguments of expressions (stored in the Heap) to
be unified or pointers to the Code Area, the Heap, the Stack or the Trail, used
for control purposes. Also, we declare a new global register to accumulate the
computed approximation degree during the weak unification process.

In the sequel, we shall comment more deeply the main points where the
SWAM design diverges from the standard WAM, but before doing that it is
necessary to introduce a note about how syntactical unification of expressions is
performed.

5.2 Standard versus weak unification

It is noteworthy that the syntactical unification algorithm is implemented into
the WAM as a distributed procedure which includes two phases:

Phase 1 Unification of the predicate symbol rooting a (sub)goal and the heads of the
clauses defining that predicate. This unification stage is immediate and pro-
duces a choice point. From the code generation point of view, it mainly pro-
duces the following set of machine instructions: try me else, retry me else
and trust me (when the program clauses are compiled).
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Phase 2 Unification of the corresponding arguments of the (sub)goal and the clause
heads being unified. From the code generation point of view, the visible ef-
fect is a set of machine instructions: get structure, unify variable and
unify value (when the program clauses are compiled). However, in this
phase, the argument unification is not tested immediately, but at execution
time by specific code portions inside the get structure instruction and the
procedure unify which is called by the unify value instruction.

Therefore, if we want to introduce weak unification into a WAM context, it is
necessary to modify both phases of the distributed unification procedure above
described.

Phase 1 This phase controls the “flexible” matching of predicate symbols during the
unification process when programs are augmented with similarity relations.
This is a critical phase, since it is not obvious at a first glance how to
proceed. We see that it requires the introduction of a program transformation
step, which transforms the original program into a set of “clauses” whose
bodies contain information about the similarity degree between predicate
symbols. The Adapter carry out the transformation and manages it in order
to facilitate the code generation. Section 5.3 describes the main features of
the transformation.

Phase 2 The adaptation of this phase is easy. It only requires the modification of
some portions of the machine instruction get structure and the procedure
unify, in order to perform a “flexible” matching of function and constant
symbols which is guided by the similarity equations.

Finally, note that, when unifying expressions in presence of similarity relations
it is necessary to store, as a part of the computation state, the current computed
approximation degree. To cover this task, we use a specific global register in the
SWAM which works as an accumulator register. We call this, the AD register.

5.3 The Adapter and the first phase of the weak unification
procedure

In a logic program, a predicate p is defined by the set of clauses whose head is
rooted by p. However, in a logic program extended with a similarity relation, a
clause defining the predicate p can also be considered as defining each predicate
q which is similar to p. On the other hand, as it was commented, the structure of
the WAM is designed to test a “crisp” matching of predicate symbols. Therefore,
if we want a “flexible” matching of predicate symbols without forcing the struc-
ture of the WAM, given a clause defining a predicate p, we need to introduce
a new clause for each predicate q which is similar to p. We do it in order to
simulate a “flexible” matching with a “crisp” technique.

The following definition formalizes the program transformation performed by
the Adapter. We need to introduce an extended language obtained by adding
to the object language alphabet the elements of the lattice [0, 1] (of similarity
degrees). Clauses in this extended language contain bodies with literals which
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are similarity degrees. We call these clauses ‘e-clauses’. Also e-clauses with an
empty head are called ‘e-goals’.

Definition 7. Let Π be a logic program and R a similarity relation on the syn-
tactic domain generated by Π. Let p(t1, . . . , tn) ← Q be a clause in Π defining
the n-ary predicate p. Then, for each R(p, q) = α > 0 add to the transformed pro-
gram Π ′ the new e-clause q(t1, . . . , tn)← α,Q. Hence, the transformed program
Π ′ = {q(t1, . . . , tn)← α,Q | (p(t1, . . . , tn)← Q) ∈ Π and R(p, q) = α > 0}.

Observe that, since R(p, p) = 1 for any symbol p, if p(t1, . . . , tn) ← Q is in the
original program, the e-clause p(t1, . . . , tn) ← 1,Q will be in the transformed
program. Thus we give an uniform treatment for all clauses in the transformed
program.

We illustrate the behavior of the transformation by means of the following
two examples.

Example 4. The following is a fragment of the transformed program obtained
when Definition 7 is applied to the clause adventures(treasure island) in
the original program of Example 3:

adventures(treasure_island):-1.0.
mystery(treasure_island):-0.5.
science_fiction(treasure_island):-0.8.
interesting(treasure_island):-0.9.
horror(treasure_island):-0.5.

Example 5. A fragment of the transformed program showing the clauses defining
the predicate adventures:

adventures(treasure_island):-1.0.
adventures(the_call_of_the_wild):-1.0.
adventures(the_murders_in_the_rue_morge):-0.5.
adventures(dracula):-0.5.
adventures(the_city_and_the_stars):-0.8.
adventures(the_martian_chronicles):-0.8.

5.4 Compilation of S-Prolog Programs

The compilation of the transformed program to machine code is done using stan-
dard techniques. In essence, clauses of a transformed program are translated into
the same machine instruction set a standard implementation would have pro-
duced. The only difference is that similarity degrees, in the body of transformed
clauses, are “stored” in a multi-label field of the try me else, retry me else
and trust me machine instructions. The values in the multi-label field will be
used during the computation of the unification degree in a WSDL resolution
step.

Example 6. The following shows the compiled code for the program fragment of
Example 5:

12



0 : adventures/1 [ 1.0 ] :try_me_else 3
1 : get_structure treasure_island 0,1
2 : proceed
3 : [ 1.0 ] :retry_me_else 6
4 : get_structure the_call_of_the_wild 0,1
5 : proceed
6 : [ 0.5 ] :retry_me_else 9
7 : get_structure the_murders_in_the_rue_morge 0,1
8 : proceed
9 : [ 0.5 ] :retry_me_else 12
10 : get_structure dracula/0,1
11 : proceed
12 : [ 0.8 ] :retry_me_else 15
13 : get_structure the_city_and_the_stars 0,1
14 : proceed
15 : [ 0.8 ] :trust_me
16 : get_structure the_martian_chronicles 0,1
17 : proceed

In general, given an adapted program, defining a predicate p:

p :- 1.0, Q_1
p :- alpha_j, Q_j
.
.
p :- alpha_m, Q_m
p :- alpha_n, Q_n

where the alpha i are similarity degrees and the Q i are conjunction of atoms,
it is translated into the following set of machine instructions:

Li : adventures/1 [ 1.0 ] :try_me_else Lj
% code for the arguments in the head atom p
% code for the body atoms in Q_1
proceed

Lj : [ alpha_j ] :retry_me_else Lk
% code for the arguments in the head atom p
% code for the body atoms in Q_j
proceed

Lk : . . .
.
.
Lm : [ alpha_m ] :retry_me_else Ln

% code for the arguments in the head atom p
% code for the body atoms in Q_m
proceed

Ln : [ alpha_n ] :trust_me

13



% code for the arguments in the head atom p
% code for the body atoms in Q_n
proceed

5.5 Specific machine instructions for approximation degree control

In this section we describe how the SWAM controls the computation of the
approximation degree when a choice point is created. In order to accomplish
this task properly, we need:

1. to introduce a global register, called the AD register, to store the approxima-
tion degree computed at each WDSL resolution step;

2. to modify the standard choice point frame structure by adding a new field
to save the value stored in the AD register, prior to the creation of a choice
point; this is because, when the computation backtracks and the next clause
in an alternative is taken, we need to restart the computation (of the ap-
proximation degree) at the point it was left before the former clause was
try.

A choice point frame is used to save the computation state, that is, all the
information required to continue the computation upon backtracking. The figure
shows the structure of a choice point frame, where the additional field to save
the AD register value is placed at the end of the frame.

B n (number of arguments)
B+1 A 1 (argument register 1)

...
B+n A n (argument register n)

B+n+1 CE (continuation environment)
B+n+2 CP (program continuation pointer)
B+n+3 B (previous choice point)
B+n+4 BP (next clause in the choice point)
B+n+5 TR (trail pointer)
B+n+6 H (heap pointer)

B+n+7 AD (approximation degree register)

A detailed explanation of the role played by each standard field and the
reason for which we must to save them is given in [1].

As the choice point frame structure has been modified, the machine instruc-
tions that work in combination with it need also to be modified. In the following
we briefly comment the functionality of these instructions, specially, regarding
with the control of the approximation degree.

The try me else machine instruction builds a new choice point frame on
top of the stack, setting its fields according to the current context. Certainly, it
stores the current value of the AD register.

14



private void try_me_else(int L) {
int newB;
if( e > b ) newB = e + heap[e+2].direccion() + 3;
else newB = b + heap[b].direccion() + 8; //<===
heap[newB]=new Termino("num_of_args",num_of_args);
int N=heap[newB].direccion();
for(int i=1 ; i <= N ; i++ )
heap[newB+i]=new Termino(heap[i].etiqueta(),heap[+i].direccion());
heap[newB+N+1]=new Termino("e",e);
heap[newB+N+2]=new Termino("cp",cp);
heap[newB+N+3]=new Termino("b",b);
heap[newB+N+4]=new Termino("L",L);
heap[newB+N+5]=new Termino("tr",tr);
heap[newB+N+6]=new Termino("h",h);
heap[newB+N+7]=new Termino("ad",(double)ad); //<===
// stores the current value of the {\tt AD} register
b=newB;
hb=h;
p=p+1;
}

When the computation backtracks, the retry me else instruction resets all
the necessary informations from the current choice point frame. Specifically, the
value which the AD register had, at the time the choice point frame was created,
is restored. Then it is set as the minimum of its value and the similarity degree
“stored” at the multi-label field of the retry me else instruction.

private void retry_me_else(int L) {
int N=heap[b].direccion();
for(int i=1; i <= N ; i++ ) {
heap[i].setEtiqueta(heap[b+i].etiqueta());
heap[i].setDireccion(heap[b+i].direccion());
}
e=heap[b+N+1].direccion();
cp=heap[b+N+2].direccion();
heap[b+N+4]=new Termino("",L);
unwind_trail(heap[b+N+5].direccion(),tr);
tr=heap[b+N+5].direccion();
h=heap[b+N+6].direccion();
ad=heap[b+N+7].rdireccion(); //<===
ad=min(ad,Double.parseDouble(actual.etiqueta().ad())); //<===
// the {\tt AD} register is restored and then set
hb=h;
p=p+1;
}
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The trust me instruction behaves in a similar way as the retry me else in-
struction does. The only difference is that the former discards the current choice
point frame after the context (including the AD register) have been restored.

private void trust_me(int L) {

int N=heap[b].direccion();
for(int i=1; i <= N ; i++ ) {
heap[i].setEtiqueta(heap[b+i].etiqueta());
heap[i].setDireccion(heap[b+i].direccion());
}
e=heap[b+N+1].direccion();
cp=heap[b+N+2].direccion();
unwind_trail(heap[b+N+5].direccion(),tr);
tr=heap[b+N+5].direccion();
h=heap[b+N+6].direccion();
ad=heap[b+N+7].rdireccion(); //<=== restores the AD register
// content before destroying the current choice point frame
ad=min(ad,Double.parseDouble(actual.etiqueta().ad())); //<===
// the {\tt AD} register is set
B=heap[b+N+3].direccion();
hb=heap[b+N+6].direccion();
p=p+1;
}

Finally, note that, since we have altered the size of a choice point frame, by
adding a new field to save the AD register, the machine instruction allocate
must be slightly modified. This is because allocate builds a new environment
frame on the top of the stack and the top of the stack is computed differently
depending on whether an environment or choice point frame is the last pushed
structure on the stack. On the other hand the machine instruction deallocate
remains unchanged.

Summarizing, as for controlling the approximation degree computation, the
SAM behaves as follows: the machine instruction try me else allocates a new
choice point frame on the top of the stack, which contains an additional field
to store the current value of the AD register. Afterwards, the retry me else
and trust me instructions restore the AD register value, when the computation
backtracks, which is used to restart the computation at the point it was left.

5.6 Specific machine instructions for argument weak unification

Before ending this section, we comment the main features of machine instructions
involved in the process of argument unification.

The machine instruction get structure, presented below, tests the simi-
larity of constant and function symbols of terms in predicate arguments. More
precisely, a call get structure(f,n,A) acts as follows (we explain the cases di-
rectly related with the weak unification process): if the heap cell referenced by
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the argument register A contains a structure (a STR tag) pointing to a function
symbol f with arity n we are in the classical case. This signals out a successful
unification step where the unification degree remains unchanged. However, when
the heap cell referenced by the argument register A is pointing to a function sym-
bol which is not syntactically equal to f but is similar to f with degree alpha,
the unification degree is recomputed (as the minimum of its previous value and
alpha) and stored into the AD register. Otherwise, the unification process fails
and the procedure backtrack is called.

public void get_structure( String nombre , int aridad , int i ) {
int addr = 0;
int caso;
boolean fail = false;
addr = deref( i );
if( heap[addr].etiqueta().equals("REF") ) caso=1;
else {if( heap[addr].etiqueta().equals("STR") ) caso=2;
else caso=3;}

switch( caso ) {
...

case 2:
int a = heap[addr].direccion();

if((heap[a].etiqueta()).equals(nombre) &&
heap[a].direccion()== aridad ) {

s = a+1;
modo = 0; //read mode

}else { //<=== dealing with similarity relations
Relacion r=similar(heap[a].etiqueta(),nombre);
if( r!=null ) {

ad=min(ad,r.ad());
s = a+1;
modo = 0;//read

}else {
fail=true;
System.out.println("No\n");

}
}

break;
...

}
if ( fail ) backtrack();
else p=p+1;
return;

}
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Finally, the machine instruction unify value calls the procedure unify,
which carries out the other part of the argument unification process. The pro-
cedure unify implements the weak unification algorithm defined in Section 2.3.

private boolean unify( int a1 , int a2 ) {
int aux1,aux2,d1,d2,v1,v2,n1,n2;
String t1,t2,f1,f2;
pdl.push(new Integer(a1));
pdl.push(new Integer(a2));
boolean fail=false;

while( !(pdl.isEmpty() || fail) ) {
aux1 = ((Integer)pdl.pop()).intValue();
aux2 = ((Integer)pdl.pop()).intValue();
d1 = deref( aux1 );
d2 = deref( aux2 );
if( d1 != d2 ) {

t1 = heap[d1].etiqueta();
v1 = heap[d1].direccion();
t2 = heap[d2].etiqueta();
v2 = heap[d2].direccion();

if( t1.equals("REF") || t2.equals("REF") ) {
bind(d1,d2);

} else {
f1 = heap[v1].etiqueta();
n1 = heap[v1].direccion();
f2 = heap[v2].etiqueta();
n2 = heap[v2].direccion();
if( (f1.equals(f2)) && ( n1 == n2 ) ) {
for( int i=1 ; i < n1 ; i++ ) {
pdl.push(new Integer(v1+i));
pdl.push(new Integer(v2+i));
}
} else { //<=== dealing with similarity relations

Relacion r=similar(f1,f2);
if( r!=null ) {

ad=min(ad,r.ad());
}else {

fail=true;
}

}
}

}
}
return fail;
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}

6 SWAM Operational Semantics

This section formally describes the operational semantics of the SWAM, which
is an adaptation of the WSLD resolution rule aiming to preserve the architecture
of a standard WAM. The goal of this section is to establish the equivalence of
the former operational mechanism and the WSLD resolution principle.

In the reminder of this section we shall work inside the framework of the
extended language built by e-clauses and e-goals. Π ′ denotes a transformed
program obtained by applying Definition 7 on a logic program Π equipped with
a similarity relation R.

Definition 8. We define the SWAM operational semantics as a transition sys-
tem 〈E,=⇒SWAM 〉 where E is a set of triples 〈G, θ, α〉 (e-goal, substitution,
approximation degree), and whose transition relation =⇒SWAM⊆ (E×E) is the
smallest relation which satisfies:

Rule 1:

β ∈ (0, 1]
〈(←β,Q′), θ, α〉 =⇒SWAM 〈← σ(Q,Q′), θ, β ∧ α〉

Rule 2:
(p(t1, . . . , tn)←Q) << Π ′,

σ = wmgu(p(t1, . . . , tn),p(s1, . . . , sn)) 6= fail, λi = νR(σ(ti),σ(si))
〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒SWAM 〈← σ(Q,Q′), σ ◦ θ, (

∧n
i=1 λi) ∧ α〉

where Q, Q′ are conjunctions of atoms.

In the sequel, we prove the semantic equivalence between the WSLD rule
and the operational mechanism of Definition 8.

Lemma 1. Given a logic program Π with a similarity relation R, let Π ′ be the
transformed program obtained by applying Definition 7. If there is a step

S = (〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒WSLD 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉)

in Π, then there exists a derivation

〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒SWAM
+ 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

in Π ′, which computes the same state.

Proof. If there is a step S in Π, is because there exists a clause C = (q(t1, . . . , tn)←
Q) in Π such that

σ = wmgu(q(t1, . . . , tn), p(s1, . . . , sn)) = wmgu({t1 ∼ s1, . . . , tn ∼ sn}),

with approximation degree

λ = νR(σ(q(t1, . . . , tn)),σ(p(s1, . . . , sn))) = R(p, q) ∧ (
∧n

i=1R(σ(ti), σ(si)))
= β ∧ (

∧n
i=1 λi).
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On the other hand, by Definition 7, if R(p, q) = β > 0, there is a clause
p(t1, . . . , tn) ← β,Q in Π ′. Therefore, it is possible to construct the following
derivation in Π ′:

〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒SWAM 〈(← β, σ(Q,Q′)), σ ◦ θ, (
∧n

i=1 λi) ∧ α〉
=⇒SWAM 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

since, wmgu(p(t1, . . . , tn), p(s1, . . . , sn)) = wmgu({t1 ∼ s1, . . . , tn ∼ sn}) = σ,
and νR(σ(ti),σ(si)) = R(σ(ti), σ(si)) = λi.

The following proposition establishes a kind of completeness result where we
prove that derivations in the original program using the WSLD resolution rule
can be reproduced by the SWAM operational mechanism in the transformed
program.

Proposition 2. Given a logic program Π with a similarity relation R, let Π ′

be the transformed program obtained by applying Definition 7. If there exists a
derivation D = (〈(←Q′

0), θ0, α0〉 =⇒WSLD
∗ 〈← Q′

n, θn, αn〉) in Π, then there
exists a derivation 〈(←Q′

0), θ0, α0〉 =⇒SWAM
∗ 〈← Q′

n, θn, αn〉 in Π ′, which
computes the same state.

Proof. By induction on the length of the derivation D and Lemma 1.

Now we proceed by demonstrating the reverse of the last proposition, which
constitute a kind of soundness result.

Lemma 2. Given a logic program Π with a similarity relation R, let Π ′ be the
transformed program obtained by applying Definition 7. If there exists a deriva-
tion D′:

〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒SWAM 〈(← β, σ(Q,Q′)), σ ◦ θ, (
∧n

i=1 λi) ∧ α〉
=⇒SWAM 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

in Π ′, with λi = νR(σ(ti),σ(si)), then there is a step S:

〈(←p(s1, . . . , sn),Q′), θ, α〉 =⇒WSLD 〈← σ(Q,Q′), σ ◦ θ, λ ∧ α〉

in Π ′, with λ = β ∧
∧n

i=1 λi.

Proof. If the first step of derivation D′ is performed using the clause C′ =
(p(t1, . . . , tn)← β,Q) in Π ′ is because R(q, p) = β > 0 and there exists a clause
C = (q(t1, . . . , tn) ← Q) in Π. Therefore, wmgu(q(t1, . . . , tn), p(s1, . . . , sn)) =
wmgu({t1 ∼ s1, . . . , tn ∼ sn}) = σ, and νR(σ(q(t1, . . . , tn)),σ(p(s1, . . . , sn))) =
R(p, q)∧ (

∧n
i=1R(σ(ti), σ(si))) = β∧ (

∧n
i=1 λi) = λ and it is possible the WSLD

step S.

Proposition 3. Given a logic program Π with a similarity relation R, let Π ′

be the transformed program obtained by applying Definition 7. If there exists
a derivation D′ = (〈(←Q′

0), θ0, α0〉 =⇒SWAM
∗ 〈← Q′

n, θn, αn〉) in Π ′, then
there exists a derivation 〈(←Q′

0), θ0, α0〉 =⇒WSLD
∗ 〈← Q′

n, θn, αn〉 in Π, which
computes the same state.
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Proof. By induction on the length of the derivation D′. Without lost of generality
we can assume that the steps in derivation D′ are conveniently ordered to allow
the application of Lemma 2.

The last proposition jointly with Proposition 2 state the equivalence of both
operational mechanisms and the correctness of our implementation.

Although derivations in Π ′ have more steps than equivalent derivations in
Π, observe that the unification effort and the number of choices in a choice point
are reduced when executing a goal in the transformed program Π ′. Hence, the
SWAM operational mechanism is more efficient than a naive, direct implemen-
tation of the WSLD resolution rule.

7 Conclusions and Future Work

In this paper we have investigate how to incorporate the weak unification al-
gorithm of [21] into the WAM, leading to a system well suited to be used for
approximate reasoning and flexible query answering. We have presented the tech-
nical details that allow us to solve this problem:

1. We have designed a new pre-compilation phase, called the Adapter, which
introduces some adaptations into the source code to facilitate the translation
task. Also, the Adapter translates the original program into a transformed
program, with explicit information about the similarity degree of predicates,
that helps us to manage similarity relations properly.

2. We have appropriately modified some machine instructions to carry out the
weak unification process. Mainly: try me else, retry me else, trust me,
get structure and the procedure unify. A global register, the AD register,
stores the result of computing the current approximation degree step by step.

As a result, we obtain a Prolog implementation based on similarity rela-
tions that we call S-Prolog. To the best of our knowledge this is the first WAM
implementation that supports similarity-based SLD resolution.

At the present time, the SWAM is a prototype implementation useful to
essay new compilation techniques. We have introduced algorithms to manage
similarity relations, although this was not an objective of this work and we did
not present them in this paper. However, the treatment of similarity relations is
rather naive and it is necessary to implement more efficient algorithms to solve
the transitive closure problem, what is left as a future work. Also we want to
study how to combine, in our setting, the WSLD resolution rule with a concrete
instance of the multi-adjoint logic programming framework described in [16–18].
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with continuous semantics. In Proc. of Logic Programming and Non-Monotonic
Reasoning, LPNMR’01, pages 351–364. Springer-Verlag, LNAI 2173, 2001.

17. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-
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