PROLE 2006

Efficient Reductants Calculi using Partial
Evaluation Techniques with Thresholding*

Pascual Julian, Ginés Moreno, Jaime Penabad

University of Castilla-La Mancha, Spain

Abstract

Reductants are a useful theoretical tool introduced for proving correctness proper-
ties in the context of generalized annotated logic programming. This concept was
adapted to the more recent and flexible framework of multi-adjoint logic program-
ming for solving a problem of incompleteness that arises when working with some
lattices. In order to be complete, multi-adjoint logic programs must be extended
with their set of reductants. In general, the notion of reductant may introduce
an important efficiency drawback. In this work we provide a more refined version
of this concept that we call PE-reductant, by using (threshold) partial evaluation
techniques. Our proposal is intended to be semantically equivalent to the classi-
cal notion of reductant, and improves previous approaches at least in the following
two efficiency criteria. Firstly, using the new definition of reductant, we can obtain
computed answers for a given goal with a lesser computational effort than by using
its precedent ones. Secondly, the proper construction of a reductant by means of
partial evaluation methods, is drastically improved after introducing thresholding
techniques which dynamically reduce the size of the underlying unfolding trees.

Key words: Fuzzy Logic Prog., Partial Evaluation, Reductants.

1 Introduction

Multi-adjoint logic programming [11,12,13] is an extremely flexible framework
combining fuzzy logic and logic programming. Informally speaking, a multi-
adjoint logic program can be seen as a set of rules each of which is annotated
by a truth degree (a value of a complete lattice, for instance the real interval
[0,1]) and a query to the system, that is, a goal plus a substitution (initially
the identity substitution, denoted by id). Given a multi-adjoint logic pro-
gram, goals are evaluated in two separate computational phases. During the

! This work has been partially supported by the EU, under FEDER, and the Spanish
Science and Education Ministry (MEC) under grant TIN 2004-07943-C04-03.
2 Email: {Pascual.Julian},{Gines.Moreno},{Jaime.Penabad}@uclm.es

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

P. JuLiAN, G. MORENO AND J. PENABAD

operational phase, admissible steps (a generalization of the classical modus
ponens inference rule) are systematically applied by a backward reasoning
procedure in a similar way to classical resolution steps in pure logic program-
ming. More precisely, in an admissible step, for a selected atom A in a goal
and a rule (H«B;v) of the program, if there is a most general unifier 6 of
A and H, the atom A is substituted by the expression (v&B)6, where “&”
is an adjoint conjunction evaluating modus ponens. Finally, the operational
phase returns a computed substitution together with an expression where all
atoms have been exploited. This last expression is then interpreted under a
given lattice during what we call the interpretive phase [6], hence returning a
pair (truth degree; substitution) which is the fuzzy counterpart of the classical
notion of computed answer traditionally used in pure logic programming.

Reductancts were introduced in the context of multi-adjoint logic program-
ming to cope with a problem of incompleteness that arises for some lattices.
It might be impossible to compute the greatest correct answer, if a lattice
(L, X) is partially ordered [13|. For instance, let a,b be two non comparable
elements in L; assume that for a (ground) goal A there are only two (fact)
rules ((A«;a) and (A«;b)) whose heads directly match with it; the first rule
contributes with truth degree a, and derives the fuzzy computed answer a
(with empty substitution); similarly, the second one contributes with b, and
derives the fuzzy computed answer b; therefore, by the soundness theorem of
multi-adjoint logic programming [13|, both a and b are correct answers and
hence, by definition of correct answer [13], the supremum (or lub, least upper
bound) sup{a,b}, is also a correct answer; however, neither sup{a,b} nor a
more general version of sup{a, b} are computed answers and, therefore, com-
pleteness is lost. The above problem can be solved by extending the original
program with a special rule (A«sup{a,b}; T), the so called reductant, which
allows us to obtain the supremum of all the contributions to the goal A.

The above discussion shows that a multi-adjoint logic program, interpreted
inside a partially ordered lattice, needs to contain all its reductants in order to
guarantee the completeness property. This obviously increases both the size
and execution time of the final “completed” program. However, this negative
effects can be highly diminished if the proposed reductants have been partially
evaluated before being introduced in the target program: the computational
effort done (once) at generation time is avoided (many times) at execution
time. Moreover, and what is best, if the proper partial evaluation process is
combined with thresholding techniques, we also achieve three extra benefits:
e The proper construction of the underlying unfolding tree consumes less
computational resources (both memory and CPU) by efficiently pruning some
unnecessary branches of the tree and hence, drastically reducing its size.

e As a direct consequence of the previous fact, the shape of the resulting
reductant is largely simplified.

e Finally, those derivation sequences performed at execution time, needs less
computation steps when using this refined notion of PE-reductant.

2

P. JuLiAN, G. MORENO AND J. PENABAD

Partial evaluation (PE) [4] is an automatic program transformation tech-
nique aiming at the optimization of a program with respect to parts of its
input: hence, it is also known as program specialization. It is expected that
the specialized program (also called residual program or partially evaluated
program) could be executed more efficiently than the original program. This
is because the residual program is able to save some computations, at exe-
cution time, that were done only once at PE time. To fulfill this goal, PE
uses symbolic computation as well as some techniques provided by the field
of program transformation [1], specially the so called unfolding transforma-
tion. Unfolding is essentially the replacement of a call by its definition, with
appropriate substitutions.

As we want to support the computation of reductants by means of PE
techniques, in [7] we have introduced a preliminary definition of the concept
of PE for multi-adjoint logic programs and goals. The idea is to adapt, for this
new framework, the techniques arisen around the field of partial deduction of
pure logic programs [3,8,10]. Following this path, we try to unfold admissible
goals, as much as possible, using the notion of unfolding rule developed in [5,6|
for multi-adjoint logic programs, in order to obtain an optimized (specialized)
version of the original program.

The structure of the paper is as follows. In Section 2 we give some prelim-
inary notions used along the whole work: subsections 2.1 and 2.2 summarize
the main features of multi-adjoint logic programming, both language syntax
and procedural semantics, whereas subsection 2.3 introduces some basic con-
cepts that extend, for the multi-adjoint logic programming framework, the
notion of partial evaluation of an atom in a program. Section 3 presents a
formal definition of PE-reductant and relates it with the classical concept of
reductant and also with the notion of partial evaluation. Inspired by our ex-
perience in the development of partial evaluation techniques, we give a more
refined version of the concept of reductant considered in [13|, which we call
PE-reductant. In Section 4, we provide a concrete algorithm for the con-
struction of PE-reductants which is based on unfolding with a set of dynamic
thresholds: subsection 4.1 firstly introduces some preparatory results in order
to formally proceed in subsection 4.2 with the improved algorithm, whereas
in subsection 4.3 we discuss the benefits of the resulting technique by means
of some comparative examples. Finally, in Section 5 we give our conclusions
and some lines of future work.

2 Preliminaries

This section gives a short summary of the main features of Multi-adjoint
logic programming (we refer the interested reader to [11,12,13] for a complete
formulation) and formalizes the basic notions involved in the partial evaluation
of multi-adjoint logic programs as introduced in [7].

3

P. JuLiAN, G. MORENO AND J. PENABAD

2.1 The multi-adjoint language

We work with a first order language, £, containing variables, function sym-
bols, predicate symbols, constants, quantifiers, V and 3, and several (arbitrary)
connectives to increase language expressiveness. In our fuzzy setting, we use
implication connectives («—1,«—,...,+,,) and also other connectives which
are grouped under the name of “aggregators” or “aggregation operators”. They
are used to combine/propagate truth values through the rules. The general
definition of aggregation operators subsumes conjunctive operators (denoted
by &1, &, . .., &), disjunctive operators (V1, Vs, ..., V;), and average and hy-
brid operators (usually denoted by @, @Q,, ..., @,). Although the connectives
&;, V; and @; are binary operators, we usually generalize them as functions
with an arbitrary number of arguments. In the following, we often write
Q(z1,...,x,) instead of Q(zq, Q(xq,...,Q(x,_1,2,)...)). Aggregation oper-
ators are useful to describe/specify user preferences. An aggregation operator,
when interpreted as a truth function, may be an arithmetic mean, a weighted
sum or in general any monotone application whose arguments are values of a
complete bounded lattice L. For example, if an aggregator @Q is interpreted as
Q(z,y, 2) = (3x 4 2y + 2)/6, we are giving the highest preference to the first
argument, then to the second, being the third argument the least significant.
By definition, the truth function for an n-ary aggregation operator @ : L™ — L
is required to be monotonous and fulfills @(T, L,)=T, @(J_,)= 1.

Additionally, our language £ contains the values of a multi-adjoint lat-
tice, (L, =, «1,&1,...,n,&,), equipped with a collection of adjoint pairs
(<, &;), where each &; is a conjunctor " intended to the evaluation of modus
ponens. In general, the set of truth values L may be the carrier of any com-
plete bounded lattice but, for readability reasons, in the examples we shall
select L as the set of real numbers in the interval [0,1] (which is a totally
ordered lattice or chain).

A rule is a formula H «; B, where H is an atomic formula (usually called
the head) and B (which is called the body) is a formula built from atomic
formulas By, ..., B, —n > 0 —, truth values of L, conjunctions, disjunctions
and aggregations. Rules whose body is T are called facts (usually, we will
represent a fact as a rule with an empty body). A goal is a body submitted
as a query to the system. Variables in a rule are assumed to be universally
quantified. Roughly speaking, a multi-adjoint logic program is a set of pairs
(R;), where R is a rule and « is a truth degree (a value of L) expressing the
confidence that the user of the system has in the truth of the rule R. Observe
that, truth degrees are axiomatically assigned (for instance) by an expert. By
abuse of language, we sometimes refer a tuple (R;«) as a “rule”.

7 For a formal definition of a multi-adjoint lattice and the semantic properties of the con-
nectives in £, see [13]. It is noteworthy that a symbol &; of £ does not always need to be
part of an adjoint pair.

P. JuLiAN, G. MORENO AND J. PENABAD

2.2 Procedural Semantics

The procedural semantics of the multi-adjoint logic language £ can be thought
of as an operational phase followed by an interpretive one. Similarly to [6], in
this section we establish a clear separation between both phases.

The operational mechanism uses a generalization of modus ponens that,
given an atomic goal A and a program rule (H+«—;B;v), if there is a substitution
0 = mgu({A = H})', we substitute the atom A by the expression (v&;B)6.
In the following, we write C[A] to denote a formula where A is a sub-expression
(usually an atom) which arbitrarily occur in the —possibly empty— context
C[]. Moreover, expression C[A/H| means the replacement of A by H in context
C[]. Also we use Var(s) for referring to the set of variables occurring in the
syntactic object s, whereas 6[Var(s)] denotes the substitution obtained from
0 by restricting its domain, Dom/(0), to Var(s).

Definition 2.1 (Admissible Steps) Let Q be a goal and let o be a substi-
tution. The pair (Q; o) is an state and we denote by € the set of states. Given
a program P, an admissible computation is formalized as a state transition
system, whose transition relation — a5 C (€ X E) is the smallest relation satis-
fying the following admissible rules? (where we always consider that A is the
selected atom in Q):

1) (Q[A]; 0)— as((Q[A/v&:B])8; 00) if 0 = mgu({H = A}), (H«—;B;v) in P.
2) (Q[A];0)—as((Q[A/L]); o) if there is no rule in P whose head unifies A.

Formulas involved in admissible computation steps are renamed apart before
being used. Note also that second rule is introduced to cope with (possible)
unsuccessful admissible derivations. When needed, we shall use the symbols
— 51 and — 459 to distinguish between specific admissible steps. Also, when
required, the exact program rule used in the corresponding step will be anno-
tated as a super—index of the — 4¢ symbol. Also the symbols —7¢ and —%
denote, respectively, the transitive closure and the reflexive, transitive closure
of —AS-

Definition 2.2 Let P be a program and let Q be a goal. An admissible deriva-
tion is a sequence (Q;id) —%¢ (Q';0). When Q' is a formula not containing
atoms, the pair (Q';0), where o = 0[Var(Q)], is called an admissible com-
puted answer (a.c.a.) for that derivation.

If we exploit all atoms of a goal, by applying admissible steps as much
as needed during the operational phase, then it becomes a formula with no
atoms which can be then directly interpreted in the multi-adjoint lattice L.

L Let mgu(FE) denote the most general unifier of an equation set E (see [9] for a formal

definition of this concept).

2 Note that case one subsumes the second case in the original definition presented in [13],
since a fact H « is really the rule H «— T. However, from a practical point of view,
when an admissible step is performed with a fact, we abbreviate the step “(Q[A];0)—as

((Q[A/v&iT])0;00)” by “(Q[A]; 0)— a5 ((Q[A/v])8; 00)”, since &i(v, T) = v.
)

P. JuLiAN, G. MORENO AND J. PENABAD

Definition 2.3 (Interpretive Step) Let P be a program, Q a goal and o a
substitution. We formalize the notion of interpretive computation as a state
transition system, whose transition relation —;sC (€ x &) is defined as the
smallest one satisfying: (Q[Q(ry,75)]; 0)—1(Q[Q(r1,72) /A ,72)];0), where @
is the truth function of connective @ in the lattice (L, <) associated to P.

We denote by —7g and —7g the transitive closure and the reflexive, transitive
closure of — g, respectively.

Definition 2.4 Let P be a program and (Q; o) an a.c.a., that is, Q is a goal
not containing atoms. An interpretive derivation is a sequence (Q;0) —ig
(Q;0). When Q' =r € L, being (L, =) the lattice associated to P, the state
(r;o) is called a fuzzy computed answer (f.c.a.) for that derivation.

Usually, we refer to a complete derivation as the sequence of admissible/ in-
terpretive steps of the form (Q;id) —%¢ (Q;0) —ig (r;0) (sometimes we
denote it by (Q;id) —%g,5 (r;0)) where (Q;0[Var(Q)]) and (r;o[Var(Q)])
are, respectively, the a.c.a. and the f.c.a. for the derivation.

2.3 Partial Evaluation of Multi-Adjoint Logic Programs

In [7] we formalize the basic notions involved in the partial evaluation of
multi-adjoint logic programs. Observe that, in contrast with the operational
semantics defined in Section 2.2, the admissible and interpretive steps can be
interleaved in any order. In practice we will give preference to the interpretive
steps over the admissible steps during the PE process. This method resembles
the normalization technique® introduced in the context of functional logic
programming to reduce the nondeterminism of a computation [2]. In the sequel
we call normalization the sequence of interpretive steps performed before an
operational unfolding step.

The partial evaluation of an atomic goal is defined by constructing in-
complete search trees for the goal and extracting the specialized definition
—usually called resultants, as defined in |[7]— from the root-to-leaf branches.
Hence, before defining this concept, we precise the notion of unfolding tree.

Definition 2.5 (Unfolding tree) Let P be a program and let Q be a goal.
An unfolding tree 7, for P and Q (using the computation rule) is a set of
(goal; substitution) pair nodes satisfying the following conditions:

(i) The root node of 7, is (Q ;id), where id is the identity substitution.

(ii) If N; = (Q[A]; 0) is a node of T, and assuming p(Q) = A is the selected
atom, then for each rule R; = (H < B;v) in P, with § = mgu({H =
A}, Nij = ((Q[A/v&B))8; 08) is a node of T,.

(iti) If N; = (Q[Q(r,+")];0) is a node of T, then, Ni; = (Q[Q(r,r")/Q(r,")]);

o) is a node of T,.

3 In a normalizing narrowing strategy a term is rewritten to its normal form before a

narrowing step is applied.

P. JuLiAN, G. MORENO AND J. PENABAD

As defined in [5,6], the second and third cases respectively relate to the appli-
cation of an operational unfolding step and an interpretive unfolding step.

An incomplete unfolding tree is an unfolding tree which, in addition to
completely evaluated leaves, may also contain leaves where no atom (or inter-
pretable expression) has been selected for a further unfolding step. That is,
we are allowed to terminate a derivation at any adequate point.

Definition 2.6 (Partial evaluation of an atom) Let P be a program, A
be an atomic goal, and T be a finite (possibly incomplete) unfolding tree for P
and A, containing at least one non-root node. Let {Q; | i =1,... k} be the
leaves of the branches of T, and P' = {{(Ao; «— Q; ; T) | i =1,...,k} the set
of rules (the so called resultants) associated with the derivations {(A ;id) —*
(Qi ;o) | i=1,...,k}. Then, the set P is called a partial evaluation of A
in P (using T).

3 Reductants versus PE-Reductants

In this section we define a new concept of reductant based on techniques
coming from the field of partial evaluation. The starting point is the original
definition presented in [13], where the classical notion of reductant was initially
adapted to the multi-adjoint logic programming framework in the following
terms:

Definition 3.1 (Reductant [13]) Let P be a program, A a ground atom,
and (Ci—; Bi;v;) be the (non empty) set of rules in P whose head matches
with A (there are 0; such that A = C;0;). A reductant for A in P is a rule
(A— Q(By,...,B,)0; T) where 0 = 0,...0,, «— is any implication with an
adjoint conjunctor, and the truth function for the intended aggregator @ is
defined as Q(by, ..., b,) = sup{vi&iby, . .., v, &nbn}.

Now we are going to show how Definition 3.1 can be improved, leading to a
more flexible approximation of this concept, by using proper notions of partial
evaluation. So, using an arbitrary unfolding tree, 7, for a program P and a
ground atom A, it is possible to construct a more refined version of the notion
of a reductanct which we call PE-reductant for A in P. The main novelty of
the following definition (which generalizes a very close, precedent notion of
PE-reductant, that we firstly introduced in [7]), is the fact that it is directly
based on the set of leaves of a given unfolding tree. Similarly to the previous
definition, in the sequel we assume that < is the implication of any adjoint
pair («, &).

Definition 3.2 (PE-Reductant) Let P be a program, A a ground atom,
and T an unfolding tree for A in P. A PE-reductant for A in P with respect
to T, is a rule (A« Qg,,(Dy,...,D,); T), where the truth function for the
intended aggregator Qg,, is defined as @sup(dl, ooy dy) = sup{dy,...,d,}, and
Ds, ..., D, are, respectively, the leaves of T.

7

P. JuLiAN, G. MORENO AND J. PENABAD

Observe that, in the particular case that the tree used in Definition 3.2 is
unfolded only one step (assuming that {(C;<—;B;;v;) € P | thereis a 6;, A =
C;0;} is the —non empty— set of rules in P whose heads match with A) then, the
resulting PE-reductant is the rule (A«sup{(v1&1B81)b1, ..., (v, &, B,)0,}; T),
which is very similar to the Definition 3.1. It is easy to prove that this par-
ticular case of PE-reductant which uses a one-step unfolding tree, conforms
with the original definition of reductant appeared in [13].

Example 3.3 Given the lattice ([0, 1], <), where “X” is the usual order on
real numbers, let P be the following multi-adjoint logic program:

:(pla)—1 (X, a); 0.7) Rs:{q(b,a)=; 0.9)
- (p(a)—c s(Y); 0.5) : (s(a)— t(a); 0.5)
(V)= 0.6) R : (s(b)—; 0.8)
Ra: (p(Y)—c q(b,Y)&y t(Y); 0.8) : (t(a)—1 p(X); 0.9)

The one-step unfolding tree for progmm P and atom p(a) is:

//\

(0.7&1.q9(X1,a);id) (0.5&¢s(Y2); (0.6;{Y3/a}) (0.8&¢(q(b,a)&rt(a));{Ys/a})
from which we obtain the PE—reductant:
<p(a> — @sup{0'7&LQ(Xla a)a O'S&GS(Y2)7 067 08&G(Q(ba OJ)&Lt(a))}; 1)
On the other hand, Definition 3.1 builds the reductant:
(p(a) « Q(q(Xy,a), 5(Y2),0.6,q(b,a)&.t(a)); 1) where Q(by, by, bs,b4) =
SUp{O.?&Lbl, 0.5&(;[72, b3, 08&(;[)4}

It is noteworthy that a PE-reductant can be constructed by using the
notion of unfolding tree in the following way.

Definition 3.4 (Construction of PE-reductants) Given a program P
and a ground atomic goal A. We can enumerate the following steps in the
construction of a PE-reductant of A in P:

(i) Construct an unfolding tree, T, for P and A, that is, the tree obtained by
unfolding the atom A in the program.

(ii) Collect the set of leaves S = {Dy,...,D,} in T.
(iii) Construct the rule (A «— Qq,{D1,...,D,}; T), which is the PE-reduc-
tant of A in P with regard to 7.

The following example presents a PE-reductant obtained from an unfolding
tree of depth 3 (all its branches have been unfolded no more than 3 steps).

Example 3.5 Let P be the program of Example 3.3 and consider atom p(a).
In the next figure, nodes where normalization steps have been applied, produc-
ing additional nodes, are remarked by bozes.

8

P. JuLiAN, G. MORENO AND J. PENABAD

(p(a);id)
R1 Ro R3 Ra
(0.7&1.9(X1, a); id) (0.5&¢s(Y2);id) (0.6; {Y3/a}) (0.8&c(q(b,a)&rt(a)); {Ya/a})

Rs Re Rr Rs

(0.74.0.9: {X1/b}) 0.5&¢(0.5&t(a)); {Y2/a} 0.5&60.8; {¥2/b}) (0.8%6(0.9&t(a)); {Ya/a})

(0.6; {X1/b}) (0.5; {¥a/a})
Rs RS

(0.5&¢(0.5&¢(0.9&1p(X5))); {Ya/a}) (0.88¢(0.9&1,(0.9&1p(X6))); {Ya/a})

After collecting the leaves of this unfolding tree, we obtain the following PE-
reductant: (p(a) «— Qsup{0.6,0.5&¢(0.5&¢(0.9&:p(X5))), 0.5, 0.6, 0.8&¢(0.9&:,

(0.9&1p(X5))) }; 1).

Because this formulation is based on partial evaluation techniques, it can
be seen as a method that produces a specialization of a program with respect
to an atomic goal, which is able to compute the greatest correct answer for
that goal. Moreover, although for the same program P and ground atom A,
it is possible to derive distinct reductants, depending on the precision of the
underlying unfolding tree, we claim that all of them are able to compute the
same greatest correct answer for the goal A.

4 Threshold Construction of PE-Reductants

In this section we provide an efficient algorithm for the construction of a PE-
reductant based on unfolding with a set of dynamic thresholds.

4.1 Upper bound of a computation and thresholds

In the context of a fuzzy computation it makes sense to disregard a derivation
if the truth degree of a (partial) fuzzy computer answer falls down below of a
certain threshold value V. In our framework, this situation could be detected
in “advance”, that is, before the fuzzy computation has been completed. The
next result provides the theoretical basis which allows us to support this “look-
ahead”.

Proposition 4.1 Let (L, <X, +1,&1,..., <, &,) be a multi-adjoint lattice.
Then, for any x,y € L, 1) x&;y =< = and 2) z&;y < y.

Proof. Item (1) is an easy consequence of the definition of multi-adjoint lat-
tice [13]. Firstly, z&;y =< x&;T because the adjoint operator &; is, by def-
inition, increasing in both arguments —that is, if x1, 29,23 € L and 1 = w9
then z1&;x3 X 22&;x3 and x3&;21 < x3&;22— and L has a top element (T)
—that is, y < T for all y € L—. Secondly, the adjoint operator &; also fulfill,

9

P. JuLiAN, G. MORENO AND J. PENABAD

by definition of multi-adjoint lattice, that z&; T = x for all x € L, which
concludes the proof. The proof of item (2) is completely analogous. O

The following result is a corolary of Proposition 4.1 showing that inf{x, y}
is an upper bound of z&y.

Proposition 4.2 Let (L, <X, +1,&1,..., <, &,) be a multi-adjoint lattice.
Then, for any z,y € L and adjoint conjunction &;: x&;y < inf{x,y}, where
inf is the lowest of x and y.

As a consequence of Proposition 4.1, it is noteworthy that, in an admissi-
ble step (Q[A]; o) —as((Q[A/v&;B])0; c0), the component v&;B, introduced
by the rule, is lesser than v. This is independent of the truth degree eventually
computed for the subgoal B. Therefore, if the goal Q is compounded by con-
junctors fulfilling the conditions of Proposition 4.1 (note that this restriction
is vacuously true for an atomic goal), v is an upper bound of the truth degree
computable for Q.

The above discussion leads, in a natural way, to the notion of threshold
unfolding, where only unfolding steps leading to nodes with a foreseeable truth
degree value greater than a threshold value V are allowed. In other words,
when the upper bound truth degree of a node falls down the threshold value
V, the unfolding of the node is stopped. Next section precises this concept.

4.2 A concrete algorithm

In this section we assume that Proposition 4.1 holds for all connectives and
aggregators. This does not imply a serious loss of generality in practice.

During the construction of a PE-reductant many unfolding steps are use-
less, since they generate leaf nodes that cannot lead to the final computation
of the supremum. For instance, in Example 3.5, node (0.5;{Y>/a}) does not
contribute, since 0.5 = 0.6 —the truth degree of a completely evaluated leaf
node— nor the node (0.5&¢(0.58&¢(0.9&.p(X5))); {Ya/a}), since, by Proposi-
tion 4.1, even when the subsequent complete evaluation of the subgoal p(X5)
would reach the top value, we have 0.5&¢(0.5&¢(0.9&.T)) < 0.5 = 0.6. So, the
PE-reductant for p(a) in the program of Example 3.5 can be written in a more
accurate/simplifiedform as: (p(a) « Qg,,{0.6,0.8&¢(0.9&+.(0.9&.p(X6)))}; 1).

We can optimize the construction of PE-reductants if we use an adapta-
tion of the notion of unfolding tree (Definition 2.5) where: i) nodes contain
information about an upper bound of the truth degree associated to the goal
component; and ii) a set of threshold values is set dynamically to limit the
generation of useless nodes. This last feature provides great opportunities to
reduce the unfolding tree shape, by stopping unfolding of those nodes whose
truth degree upper bound component falls down a threshold value V.

We propose a construction procedure in two phases. In the first phase
we build (traverse) an incomplete threshold unfolding tree, for a program P
and a goal A, trying to limit the generation of useless nodes. During the

10

P. JuLiAN, G. MORENO AND J. PENABAD

construction of the tree we store the leaf nodes in a list. In the second phase,
in order to construct the PE-reductant, we traverse the former list and remove
the leaf nodes that cannot contribute to the computation of the supremum.

As for a classical proof procedure, three points are important: the com-
putation rule (that is, the selection function used to decide which atom must
be exploited in the next computation step?); the order rule (i.e., the order
in which the rules of the program are tried for unfolding) and the search
strategy (either a breadth-first or a depth-first). The algorithm we present is
parametric with regard all these points, as well as a stop criterion to ensure
termination ofunfolding®.

Algorithm 1 (Unfolding with a set of dynamic thresholds)
»»>> [INPUT]: A program P and a ground atom A.
(i) Set LEAVES =[] (the empty list), and THRESHOLDS = [1];
(ii) Build the root node (A;id; T) and set OPEN = [(4;id; T)];
(iii) While OPEN #] do:
(a) Take a node, say N;, of the list OPEN (following the search
strategy) ;
(b) If N; holds the stop criterion then add the node N; to the list
LEAVES;
(c) Else, assume that N; = (Q[E];o;u), where E is the selected atom
in Q (following the computation rule);
For each rule R; = (H « B;v) € P (following the order rule),
with § = mgu({F = H}) and THERE IS NOT any V € THRESHOLDS
such that v <V do:
* Generate the child node N;; = ((Q[E/v&B])0; 00;inf{u,v});
¢ Normalize the first component of the new node ./\/'” That
is, apply a (maximal) sequence of interpretive steps:
((QIE/v&B))0;00)—1s*((Q';00). Thus, we obtain a new node
N, = (Q's o inf {u,).
e If Q =r¢c L, then
- If THERE IS NOT any V€ THRESHOLDS s.t. r<V:
Let W C THRESHOLDS be the (possibly empty) greatest
subset of values comparable with r such that r >)V for each
Vew;
Replace the set W by {r} in THRESHOLDS.
¢ Else (Q #r € L; i.e., the node is not completely evaluated),
add the node ./\/;'j to the list OPEN;

(iv) Remove nodes (Q(r1,...,7n,B1,...,Bm);¢;w) in LEAVES verifying
that, there exists V S THRESHOLDS, such that w < Vor
Q(ry, ..oy, Tyeen, 1) < V.

»>»»» [OUTPUT]: Lists THRESHOLDS and LEAVES.

As we have seen, the algorithm works with four lists:

4 We have recently proved in [5] an independence result for this choice, as it is also usual in
other non-fuzzy logic paradigms. Similarly to PROLOG, in our examples we always exploit
the left-most atom of a given goal.

5 The local termination problem can be solved in an albeit ad hoc way, by imposing an
arbitrary depth bound for the unfolding, or using more refined approaches like methods
based on well-founded orders or well-quasi orders.

11

P. JuLiAN, G. MORENO AND J. PENABAD

e OPEN, which contains the nodes to be unfolded;
e LEAV ES, which contains the nodes which hold some termination criterion;

e THRESHOLDS, which stores a set of nodes completely evaluated (not
comparable among them) which are used as thresholds.

Roughly speaking, we only permit to unfold a node (by means of an admissible
step) using rules with a truth degree v, such that, v is comparable with none
VeTHRESHOLDS, or v >V for some V € THRESHOLDS. Otherwise,
because a direct consequence of Proposition 4.1, we would reach a node (goal)
whose later evaluation never would produce a truth degree greater or equal to
V. The inclusion of a normalization step (that is, a sequence of interpretive un-
folding steps) after each operational unfolding step increases the possibility of
obtaining completely evaluated nodes and therefore the possibility of refining
the set of threshold values. Thus, more useless nodes can be disregarded.
Observe that the list LEAVES can be accessed either as a LIFO (stack) or
a FIFO (queue) structure, which respectively corresponds with a depth-first
or breadth-first generation/ traversal of the underlying tree. The experience
shows us that there are not advantages (with regard the elimination of useless
nodes) when choosing either a breadth-first or a depth first strategy. We
have examples where the breadth-first strategy has a better performance in
comparison with the depth first strategy and vice-versa. Also there is not any
evidence indicating if a concrete computation rule can improve the elimination
of useless nodes. However, the order rule has a mayor impact in the removal
of useless nodes. We saw that an order rule which reorders rules on the basis
of the number of atoms in their bodies, giving preference to the facts over the
other rules, has (possibly) the best behavior.
Finally, if THRESHOLDS = {ry,...,r,} and LEAVES = {{(Q1;¢1;wq)
veo s (Qn; dp;wy)} are the lists of thresholds and leaves returned by Algo-
rithm 1, the PE-reductant of A in P is: (A—Qgp{r1,...,7m, Q1,...,Oun}; T).

Example 4.3 Let P be the program and the goal p(a) of Example 3.3. Assume
an order rule such that rules in P are tried in the following order for unfolding:

Ry (p(Y)—; 0.6) Rs : (p(a)—¢ s(Y); 0.5)
Rt {q(b,a)— ; 0.9) Re = (t(a)—L p(X); 0.9)
Rs: (s(b)« ; 0.8) R7: (s(a)—¢ t(a); 0.5)
Ry : (pla)er q(X,a); 0.7) Rs : (p(Y)c q(b,Y)& t(Y); 0.8)

and a stop criterion that only permits depth-3 unfolding. After we set’V =0
and construct the root node (p(a);1), applying the sequence of steps in Al-
gorithm 1, we obtain the following depth-3 threshold unfolding tree® for the
program P and the ground atom p(a) (which, for this example, is independent
of the search strategy used in its construction):

3 For the sake of simplicity, we omit the substitution component of the nodes in the repre-
sentation of the threshold unfolding tree.

12

P. JuLiAN, G. MORENO AND J. PENABAD

//\

(0.6;0.6) (0.78&1q(X5, a) (0.8&¢(q(b, a)&t(a)); 0.8)
RQ RQ
(0.7&.0.9;0.7)

(08&G(09&Lt(a)), O8>

(0.6;0.7)

Re

Observe that, at the very beginning, the unfolding step performed with rule Ry
leads to the complete evaluated leaf node (0.6;0.6). Therefore the threshold
V s set to 0.6 and the unfolding step with the rule Ry is avoided. At level
2, the normalized leaf node (0.6;0.6) does not alter the threshold V and since
the computed truth degree 0.6 is not greater than V), this node is not added
to LEAV ES. Hence, we obtain an unfolding tree smaller than the one ob-
tained in Example 3.5. Finally, the Algorithm 1 returns the set of LEAV ES
{{(0.6;0.6), (0.8&¢(0.9&+.(0.9&:p(X3)));0.8) }, which allows us to generate a
simpler PE-reductant: (p(a) < Qg,,,{0.6,0.8&¢(0.9&1(0.9&:p(X3)))}; 1).

4.8 A comparative example

Our last example illustrates the benefits achieved by our threshold-based tech-
nique for computing PE-reductants when it is compared with Definitions 3.1
and 3.2. Firstly, we are interested in evidencing that the original program is
not able to compute a concrete correct answer. Secondly, we focus our at-
tention in the comparison of the computational effort needed to compute and
execute different forms of PE-reductants, as well as their own shapes, which
highlights the main advantages of our algorithm.

Let P be the following program, where connective & used in all rules has
a truth function defined by &(z,y) = inf{x,y}, and the underlying lattice
(L, =) is represented by the corresponding diagram.

T
Ri: (pla)— q(X,a);) Ra:{g(ba)—;6) \
Ry (p(Y)e— ¢(X5Y)&s(X)&t(Y); a) Rs:(s(b)—; B) l
Rs : (pla)— s(b)& t(a); T) Re:(tla)—;)

/

An unfolding tree of depth 3 for the program P and the ground atom p(a) is
13

P. JuLiAN, G. MORENO AND J. PENABAD

R3

(akq(X1,afiid) (a&(g(Xa,a)les(Xa)&et(a)); {Ya/a}) (T&(3(B)&t(a));id)

R R4 RS
(ad&ed; { X1 /b}) .
(& (0&s(b)&t(a)); {Ya/a, X2 /b}) (T&(B&t(a)); id)
(o {X1/b})
Rs Re
(T&(B&);1id)

(& (8&B&t(a)); {Ya/a, Xo/b})

(B;id)
From this figure we can construct the following PE-reductants exploiting dif-
ferent unfolding trees of depth-1, depth-3, or depth-3 with thresholding (which
avoids the generation of the central branch shown in the figure), respectively:
R: (pla)— Qup(a&(q(Xy, a), akq(Xs, a)les(Xa)&t(a)), T&(s(b)&t(a))); T)
R’ ({pla)— Qup(a, ale(0&(8&t(a))), B); T)

R": (pla)— Qup(a, B); T)

Then, for the considered goal p(a), the following facts hold:

(i) We know that, by the soundness property of multi-adjoint logic programs,
since both («;id) and ((;id) are fuzzy computed answers for P and p(a),
they are correct answers too. Moreover, (sup{c, 5};id) = (T;id) is also
a correct answer. However, (T;id) can not be computed in P.

(ii) Fortunately, the PE-reductant R allows us to obtain the fuzzy com-
puted answer (T;id) after applying 10 computation steps as follows:
(p(a);id) —R¢ (Qg,(akq(X1,a), a&(q(Xe, a)&s(X2)&t(a)), T&(s(b)&
t(a)));id) —'{3);s (T:id). On the other hand, almost half the compu-
tational effort is needed when using the simpler PE-reductant R'.

(iii) However, not only R” has the best shape, but also it proceeds with the
best computational behaviour, by simply requiring the following pair of
computation steps: (p(a);id) —%5¢ (Qu,(a, B);id) — 15 (T;id).

5 Conclusions and Further Research

Reductants are crucial to cope with completeness in multi-adjoint logic pro-
gramming. In this paper we have defined a method for computing the so called
PE-reductants by using partial evaluation techniques based on unfolding with
a set of dynamic thresholds. Moreover, we have discussed the benefits of our
technique by means of several comparative examples, referring to the gains in
efficiency achieved not only when constructing the proper PE-reductant, but
also when using it at execution time. Nowadays we are working in the formu-
lation of the set of properties fulfilled by our improved definition of reductant.

14

P. JuLiAN, G. MORENO AND J. PENABAD
References

[1] R.M. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of the ACM, 24(1):44-67, 1977.

[2] M. Fay. First Order Unification in an Equational Theory. In Proc of 4th Int’l
Conf. on Automated Deduction, pages 161-167, 1979.

[3] J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of
Partial Evaluation and Semantics-Based Program Manipulation, Copenhagen,
Denmark, June 1993, pages 88-98. ACM, New York, 1993.

[4] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[5] P. Julidn, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjoint
Approach. Fuzzy Sets and Systems, FElsevier, 154:16-33, 2005.

[6] P. Julidn, G. Moreno, and J. Penabad. Operational /Interpretive Unfolding of
Multi-adjoint Logic Programs. In F. Lopez-Fraguas, editor, Proc. of V Jornadas
sobre Programacion y Lenguajes, PROLE’2005, Granada, Spain, September 14-
16, pages 239-248. University of Granada, 2005.

[7] P. Julidan, G. Moreno, and J. Penabad. Evaluacion Parcial de Programas
Légicos Multi-adjuntos y Aplicaciones. In A. Fernandez, editor, Proc. of Campus
Multidisciplinar en Percepcion e Inteligencia, CMPI-2006, Albacete, Spain, July
10-14, pages 712-724. UCLM, 2006.

[8] J. Komorowski. An Introduction to Partial Deduction. In A. Pettorossi, editor,
Meta- Programming in Logic, Uppsala, Sweden, pages 49-69. Springer LNCS 649,
1992.

[9] J. L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587—
625. Morgan Kaufmann, Los Altos, Ca., 1988.

[10] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11:217-242, 1991.

[11] J. Medina, M. Ojeda-Aciego, and P. Vojtas. Multi-adjoint logic programming
with continuous semantics. Proc of Logic Programming and Non-Monotonic
Reasoning, LPNMR’01, Springer-Verlag, LNAI 2173:351-364, 2001.

[12] J. Medina, M. Ojeda-Aciego, and P. Vojtas. A procedural semantics for multi-
adjoint logic programing. Progress in Artificial Intelligence, EPIA’01, Springer-
Verlag, LNAI, 2258(1):290-297, 2001.

[13] J. Medina, M. Ojeda-Aciego, and P. Vojtas. Similarity-based Unification: a
multi-adjoint approach. Fuzzy Sets and Systems, 146:43-62, 2004.

15

	Introduction
	Preliminaries
	The multi-adjoint language
	Procedural Semantics
	Partial Evaluation of Multi-Adjoint Logic Programs

	Reductants versus PE-Reductants
	Threshold Construction of PE-Reductants
	Upper bound of a computation and thresholds
	A concrete algorithm
	A comparative example

	Conclusions and Further Research
	References

