
PROLE 2006

E�ient Redutants Caluli using PartialEvaluation Tehniques with Thresholding 1

Pasual Julián, Ginés Moreno, Jaime Penabad 2University of Castilla-La Manha, SpainAbstratRedutants are a useful theoretial tool introdued for proving orretness proper-ties in the ontext of generalized annotated logi programming. This onept wasadapted to the more reent and �exible framework of multi-adjoint logi program-ming for solving a problem of inompleteness that arises when working with somelatties. In order to be omplete, multi-adjoint logi programs must be extendedwith their set of redutants. In general, the notion of redutant may introduean important e�ieny drawbak. In this work we provide a more re�ned versionof this onept that we all PE-redutant, by using (threshold) partial evaluationtehniques. Our proposal is intended to be semantially equivalent to the lassi-al notion of redutant, and improves previous approahes at least in the followingtwo e�ieny riteria. Firstly, using the new de�nition of redutant, we an obtainomputed answers for a given goal with a lesser omputational e�ort than by usingits preedent ones. Seondly, the proper onstrution of a redutant by means ofpartial evaluation methods, is drastially improved after introduing thresholdingtehniques whih dynamially redue the size of the underlying unfolding trees.Key words: Fuzzy Logi Prog., Partial Evaluation, Redutants.1 IntrodutionMulti-adjoint logi programming [11,12,13℄ is an extremely �exible frameworkombining fuzzy logi and logi programming. Informally speaking, a multi-adjoint logi program an be seen as a set of rules eah of whih is annotatedby a truth degree (a value of a omplete lattie, for instane the real interval
[0, 1]) and a query to the system, that is, a goal plus a substitution (initiallythe identity substitution, denoted by id). Given a multi-adjoint logi pro-gram, goals are evaluated in two separate omputational phases. During the
1 This work has been partially supported by the EU, under FEDER, and the SpanishSiene and Eduation Ministry (MEC) under grant TIN 2004-07943-C04-03.
2 Email: {Pasual.Julian},{Gines.Moreno},{Jaime.Penabad}�ulm.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

P. Julian, G. Moreno and J. Penabadoperational phase, admissible steps (a generalization of the lassial modusponens inferene rule) are systematially applied by a bakward reasoningproedure in a similar way to lassial resolution steps in pure logi program-ming. More preisely, in an admissible step, for a seleted atom A in a goaland a rule 〈H←B; v〉 of the program, if there is a most general uni�er θ of
A and H , the atom A is substituted by the expression (v&B)θ, where �&�is an adjoint onjuntion evaluating modus ponens. Finally, the operationalphase returns a omputed substitution together with an expression where allatoms have been exploited. This last expression is then interpreted under agiven lattie during what we all the interpretive phase [6℄, hene returning apair 〈truth degree; substitution〉 whih is the fuzzy ounterpart of the lassialnotion of omputed answer traditionally used in pure logi programming.Redutants were introdued in the ontext of multi-adjoint logi program-ming to ope with a problem of inompleteness that arises for some latties.It might be impossible to ompute the greatest orret answer, if a lattie
(L,�) is partially ordered [13℄. For instane, let a, b be two non omparableelements in L; assume that for a (ground) goal A there are only two (fat)rules (〈A←; a〉 and 〈A←; b〉) whose heads diretly math with it; the �rst ruleontributes with truth degree a, and derives the fuzzy omputed answer a(with empty substitution); similarly, the seond one ontributes with b, andderives the fuzzy omputed answer b; therefore, by the soundness theorem ofmulti-adjoint logi programming [13℄, both a and b are orret answers andhene, by de�nition of orret answer [13℄, the supremum (or lub, least upperbound) sup{a, b}, is also a orret answer; however, neither sup{a, b} nor amore general version of sup{a, b} are omputed answers and, therefore, om-pleteness is lost. The above problem an be solved by extending the originalprogram with a speial rule 〈A←sup{a, b};⊤〉, the so alled redutant, whihallows us to obtain the supremum of all the ontributions to the goal A.The above disussion shows that a multi-adjoint logi program, interpretedinside a partially ordered lattie, needs to ontain all its redutants in order toguarantee the ompleteness property. This obviously inreases both the sizeand exeution time of the �nal �ompleted� program. However, this negativee�ets an be highly diminished if the proposed redutants have been partiallyevaluated before being introdued in the target program: the omputationale�ort done (one) at generation time is avoided (many times) at exeutiontime. Moreover, and what is best, if the proper partial evaluation proess isombined with thresholding tehniques, we also ahieve three extra bene�ts:
• The proper onstrution of the underlying unfolding tree onsumes lessomputational resoures (both memory and CPU) by e�iently pruning someunneessary branhes of the tree and hene, drastially reduing its size.
• As a diret onsequene of the previous fat, the shape of the resultingredutant is largely simpli�ed.
• Finally, those derivation sequenes performed at exeution time, needs lessomputation steps when using this re�ned notion of PE-redutant.2

P. Julian, G. Moreno and J. PenabadPartial evaluation (PE) [4℄ is an automati program transformation teh-nique aiming at the optimization of a program with respet to parts of itsinput: hene, it is also known as program speialization. It is expeted thatthe speialized program (also alled residual program or partially evaluatedprogram) ould be exeuted more e�iently than the original program. Thisis beause the residual program is able to save some omputations, at exe-ution time, that were done only one at PE time. To ful�ll this goal, PEuses symboli omputation as well as some tehniques provided by the �eldof program transformation [1℄, speially the so alled unfolding transforma-tion. Unfolding is essentially the replaement of a all by its de�nition, withappropriate substitutions.As we want to support the omputation of redutants by means of PEtehniques, in [7℄ we have introdued a preliminary de�nition of the oneptof PE for multi-adjoint logi programs and goals. The idea is to adapt, for thisnew framework, the tehniques arisen around the �eld of partial dedution ofpure logi programs [3,8,10℄. Following this path, we try to unfold admissiblegoals, as muh as possible, using the notion of unfolding rule developed in [5,6℄for multi-adjoint logi programs, in order to obtain an optimized (speialized)version of the original program.The struture of the paper is as follows. In Setion 2 we give some prelim-inary notions used along the whole work: subsetions 2.1 and 2.2 summarizethe main features of multi-adjoint logi programming, both language syntaxand proedural semantis, whereas subsetion 2.3 introdues some basi on-epts that extend, for the multi-adjoint logi programming framework, thenotion of partial evaluation of an atom in a program. Setion 3 presents aformal de�nition of PE-redutant and relates it with the lassial onept ofredutant and also with the notion of partial evaluation. Inspired by our ex-periene in the development of partial evaluation tehniques, we give a morere�ned version of the onept of redutant onsidered in [13℄, whih we allPE-redutant. In Setion 4, we provide a onrete algorithm for the on-strution of PE-redutants whih is based on unfolding with a set of dynamithresholds: subsetion 4.1 �rstly introdues some preparatory results in orderto formally proeed in subsetion 4.2 with the improved algorithm, whereasin subsetion 4.3 we disuss the bene�ts of the resulting tehnique by meansof some omparative examples. Finally, in Setion 5 we give our onlusionsand some lines of future work.2 PreliminariesThis setion gives a short summary of the main features of Multi-adjointlogi programming (we refer the interested reader to [11,12,13℄ for a ompleteformulation) and formalizes the basi notions involved in the partial evaluationof multi-adjoint logi programs as introdued in [7℄.3

P. Julian, G. Moreno and J. Penabad2.1 The multi-adjoint languageWe work with a �rst order language, L, ontaining variables, funtion sym-bols, prediate symbols, onstants, quanti�ers, ∀ and ∃, and several (arbitrary)onnetives to inrease language expressiveness. In our fuzzy setting, we useimpliation onnetives (←1,←2, . . . ,←m) and also other onnetives whihare grouped under the name of �aggregators� or �aggregation operators�. Theyare used to ombine/propagate truth values through the rules. The generalde�nition of aggregation operators subsumes onjuntive operators (denotedby &1, &2, . . . , &k), disjuntive operators (∨1,∨2, . . . ,∨l), and average and hy-brid operators (usually denoted by @1, @2, . . . , @n). Although the onnetives
&i, ∨i and @i are binary operators, we usually generalize them as funtionswith an arbitrary number of arguments. In the following, we often write
@(x1, . . . , xn) instead of @(x1, @(x2, . . . , @(xn−1, xn) . . .)). Aggregation oper-ators are useful to desribe/speify user preferenes. An aggregation operator,when interpreted as a truth funtion, may be an arithmeti mean, a weightedsum or in general any monotone appliation whose arguments are values of aomplete bounded lattie L. For example, if an aggregator @ is interpreted as
@̇(x, y, z) = (3x + 2y + z)/6, we are giving the highest preferene to the �rstargument, then to the seond, being the third argument the least signi�ant.By de�nition, the truth funtion for an n-ary aggregation operator @̇ : Ln → Lis required to be monotonous and ful�lls @̇(⊤, . . . ,⊤) = ⊤, @̇(⊥, . . . ,⊥) = ⊥.Additionally, our language L ontains the values of a multi-adjoint lat-tie, 〈L,�,←1, &1, . . . ,←n, &n〉, equipped with a olletion of adjoint pairs
〈←i, &i〉, where eah &i is a onjuntor 7 intended to the evaluation of modusponens. In general, the set of truth values L may be the arrier of any om-plete bounded lattie but, for readability reasons, in the examples we shallselet L as the set of real numbers in the interval [0, 1] (whih is a totallyordered lattie or hain).A rule is a formula H ←i B, where H is an atomi formula (usually alledthe head) and B (whih is alled the body) is a formula built from atomiformulas B1, . . . , Bn � n ≥ 0 �, truth values of L, onjuntions, disjuntionsand aggregations. Rules whose body is ⊤ are alled fats (usually, we willrepresent a fat as a rule with an empty body). A goal is a body submittedas a query to the system. Variables in a rule are assumed to be universallyquanti�ed. Roughly speaking, a multi-adjoint logi program is a set of pairs
〈R; α〉, where R is a rule and α is a truth degree (a value of L) expressing theon�dene that the user of the system has in the truth of the rule R. Observethat, truth degrees are axiomatially assigned (for instane) by an expert. Byabuse of language, we sometimes refer a tuple 〈R; α〉 as a �rule�.
7 For a formal de�nition of a multi-adjoint lattie and the semanti properties of the on-netives in L, see [13℄. It is noteworthy that a symbol &j of L does not always need to bepart of an adjoint pair. 4

P. Julian, G. Moreno and J. Penabad2.2 Proedural SemantisThe proedural semantis of the multi-adjoint logi language L an be thoughtof as an operational phase followed by an interpretive one. Similarly to [6℄, inthis setion we establish a lear separation between both phases.The operational mehanism uses a generalization of modus ponens that,given an atomi goalA and a program rule 〈H←iB; v〉, if there is a substitution
θ = mgu({A = H}) 1 , we substitute the atom A by the expression (v&iB)θ.In the following, we write C[A] to denote a formula where A is a sub-expression(usually an atom) whih arbitrarily our in the �possibly empty� ontext
C[]. Moreover, expression C[A/H] means the replaement of A by H in ontext
C[]. Also we use Var(s) for referring to the set of variables ourring in thesyntati objet s, whereas θ[Var(s)] denotes the substitution obtained from
θ by restriting its domain, Dom(θ), to Var(s).De�nition 2.1 (Admissible Steps) Let Q be a goal and let σ be a substi-tution. The pair 〈Q; σ〉 is an state and we denote by E the set of states. Givena program P, an admissible omputation is formalized as a state transitionsystem, whose transition relation→AS ⊆ (E ×E) is the smallest relation satis-fying the following admissible rules 2 (where we always onsider that A is theseleted atom in Q):1) 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P.2) 〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if there is no rule in P whose head uni�es A.Formulas involved in admissible omputation steps are renamed apart beforebeing used. Note also that seond rule is introdued to ope with (possible)unsuessful admissible derivations. When needed, we shall use the symbols
→AS1 and →AS2 to distinguish between spei� admissible steps. Also, whenrequired, the exat program rule used in the orresponding step will be anno-tated as a super�index of the →AS symbol. Also the symbols →+

AS and →∗
ASdenote, respetively, the transitive losure and the re�exive, transitive losureof →AS.De�nition 2.2 Let P be a program and let Q be a goal. An admissible deriva-tion is a sequene 〈Q; id〉 →∗

AS 〈Q
′; θ〉. When Q′ is a formula not ontainingatoms, the pair 〈Q′; σ〉, where σ = θ[Var(Q)], is alled an admissible om-puted answer (a..a.) for that derivation.If we exploit all atoms of a goal, by applying admissible steps as muhas needed during the operational phase, then it beomes a formula with noatoms whih an be then diretly interpreted in the multi-adjoint lattie L.

1 Let mgu(E) denote the most general uni�er of an equation set E (see [9℄ for a formalde�nition of this onept).
2 Note that ase one subsumes the seond ase in the original de�nition presented in [13℄,sine a fat H ← is really the rule H ← ⊤. However, from a pratial point of view,when an admissible step is performed with a fat, we abbreviate the step �〈Q[A]; σ〉→AS

〈(Q[A/v&i⊤])θ; σθ〉� by �〈Q[A]; σ〉→AS〈(Q[A/v])θ; σθ〉�, sine &̇i(v,⊤) = v.5

P. Julian, G. Moreno and J. PenabadDe�nition 2.3 (Interpretive Step) Let P be a program, Q a goal and σ asubstitution. We formalize the notion of interpretive omputation as a statetransition system, whose transition relation →IS⊆ (E × E) is de�ned as thesmallest one satisfying: 〈Q[@(r1, r2)]; σ〉→IS〈Q[@(r1,r2)/@̇(r1,r2)];σ〉, where @̇is the truth funtion of onnetive @ in the lattie 〈L,�〉 assoiated to P.We denote by→+
IS and→∗

IS the transitive losure and the re�exive, transitivelosure of →IS, respetively.De�nition 2.4 Let P be a program and 〈Q; σ〉 an a..a., that is, Q is a goalnot ontaining atoms. An interpretive derivation is a sequene 〈Q; σ〉 →∗
IS

〈Q′; σ〉. When Q′ = r ∈ L, being 〈L,�〉 the lattie assoiated to P, the state
〈r; σ〉 is alled a fuzzy omputed answer (f..a.) for that derivation.Usually, we refer to a omplete derivation as the sequene of admissible/ in-terpretive steps of the form 〈Q; id〉 →∗

AS 〈Q
′; σ〉 →∗

IS 〈r; σ〉 (sometimes wedenote it by 〈Q; id〉 →∗
AS/IS 〈r; σ〉) where 〈Q′; σ[Var(Q)]〉 and 〈r; σ[Var(Q)]〉are, respetively, the a..a. and the f..a. for the derivation.2.3 Partial Evaluation of Multi-Adjoint Logi ProgramsIn [7℄ we formalize the basi notions involved in the partial evaluation ofmulti-adjoint logi programs. Observe that, in ontrast with the operationalsemantis de�ned in Setion 2.2, the admissible and interpretive steps an beinterleaved in any order. In pratie we will give preferene to the interpretivesteps over the admissible steps during the PE proess. This method resemblesthe normalization tehnique 3 introdued in the ontext of funtional logiprogramming to redue the nondeterminism of a omputation [2℄. In the sequelwe all normalization the sequene of interpretive steps performed before anoperational unfolding step.The partial evaluation of an atomi goal is de�ned by onstruting in-omplete searh trees for the goal and extrating the speialized de�nition�usually alled resultants, as de�ned in [7℄� from the root-to-leaf branhes.Hene, before de�ning this onept, we preise the notion of unfolding tree.De�nition 2.5 (Unfolding tree) Let P be a program and let Q be a goal.An unfolding tree τϕ for P and Q (using the omputation rule ϕ) is a set of

〈goal; substitution〉 pair nodes satisfying the following onditions:(i) The root node of τϕ is 〈Q ; id〉, where id is the identity substitution.(ii) If Ni ≡ 〈Q[A]; σ〉 is a node of τϕ and assuming ϕ(Q) = A is the seletedatom, then for eah rule Rj ≡ 〈H ← B; v〉 in P, with θ = mgu({H =
A}), Nij ≡ 〈(Q[A/v&B])θ; σθ〉 is a node of τϕ.(iii) If Ni ≡ 〈Q[@(r, r′)]; σ〉 is a node of τϕ then, Nij ≡ 〈Q[@(r, r′)/@̇(r, r′)]);
σ〉 is a node of τϕ.

3 In a normalizing narrowing strategy a term is rewritten to its normal form before anarrowing step is applied. 6

P. Julian, G. Moreno and J. PenabadAs de�ned in [5,6℄, the seond and third ases respetively relate to the appli-ation of an operational unfolding step and an interpretive unfolding step.An inomplete unfolding tree is an unfolding tree whih, in addition toompletely evaluated leaves, may also ontain leaves where no atom (or inter-pretable expression) has been seleted for a further unfolding step. That is,we are allowed to terminate a derivation at any adequate point.De�nition 2.6 (Partial evaluation of an atom) Let P be a program, Abe an atomi goal, and τ be a �nite (possibly inomplete) unfolding tree for Pand A, ontaining at least one non-root node. Let {Qi | i = 1, . . . , k} be theleaves of the branhes of τ , and P ′ = {〈Aσi ← Qi ;⊤〉 | i = 1, . . . , k} the setof rules (the so alled resultants) assoiated with the derivations {〈A ; id〉 →+

〈Qi ; σi〉 | i = 1, . . . , k}. Then, the set P ′ is alled a partial evaluation of Ain P (using τ).3 Redutants versus PE-RedutantsIn this setion we de�ne a new onept of redutant based on tehniquesoming from the �eld of partial evaluation. The starting point is the originalde�nition presented in [13℄, where the lassial notion of redutant was initiallyadapted to the multi-adjoint logi programming framework in the followingterms:De�nition 3.1 (Redutant [13℄) Let P be a program, A a ground atom,and 〈Ci←i Bi; vi〉 be the (non empty) set of rules in P whose head matheswith A (there are θi suh that A = Ciθi). A redutant for A in P is a rule
〈A← @(B1, . . . ,Bn)θ;⊤〉 where θ = θ1 . . . θn, ← is any impliation with anadjoint onjuntor, and the truth funtion for the intended aggregator @ isde�ned as @̇(b1, . . . , bn) = sup{v1&̇1b1, . . . , vn&̇nbn}.Now we are going to show how De�nition 3.1 an be improved, leading to amore �exible approximation of this onept, by using proper notions of partialevaluation. So, using an arbitrary unfolding tree, τ , for a program P and aground atom A, it is possible to onstrut a more re�ned version of the notionof a redutant whih we all PE-redutant for A in P. The main novelty ofthe following de�nition (whih generalizes a very lose, preedent notion ofPE-redutant, that we �rstly introdued in [7℄), is the fat that it is diretlybased on the set of leaves of a given unfolding tree. Similarly to the previousde�nition, in the sequel we assume that ← is the impliation of any adjointpair 〈←, &〉.De�nition 3.2 (PE-Redutant) Let P be a program, A a ground atom,and τ an unfolding tree for A in P . A PE-redutant for A in P with respetto τ , is a rule 〈A← @sup(D1, . . . ,Dn);⊤〉, where the truth funtion for theintended aggregator @sup is de�ned as @̇sup(d1, . . . , dn) = sup{d1, . . . , dn}, and
D1, . . . ,Dn are, respetively, the leaves of τ .7

P. Julian, G. Moreno and J. PenabadObserve that, in the partiular ase that the tree used in De�nition 3.2 isunfolded only one step (assuming that {〈Ci←iBi; vi〉 ∈ P | there is a θi, A =
Ciθi} is the �non empty� set of rules in P whose heads math with A) then, theresulting PE-redutant is the rule 〈A←sup{(v1&1B1)θ1, . . . , (vn&nBn)θn};⊤〉,whih is very similar to the De�nition 3.1. It is easy to prove that this par-tiular ase of PE-redutant whih uses a one-step unfolding tree, onformswith the original de�nition of redutant appeared in [13℄.Example 3.3 Given the lattie ([0, 1],�), where ��� is the usual order onreal numbers, let P be the following multi-adjoint logi program:

R1 : 〈p(a)←L q(X,a); 0.7〉

R2 : 〈p(a)←G s(Y); 0.5〉

R3 : 〈p(Y)← ; 0.6〉

R4 : 〈p(Y)←G q(b, Y)&L t(Y); 0.8〉

R5 : 〈q(b, a)← ; 0.9〉

R6 : 〈s(a)←G t(a); 0.5〉

R7 : 〈s(b)← ; 0.8〉

R8 : 〈t(a)←L p(X); 0.9〉The one-step unfolding tree for program P and atom p(a) is:
〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.5&Gs(Y2); id〉

R2

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4from whih we obtain the PE-redutant:
〈p(a)← @sup{0.7&Lq(X1, a), 0.5&Gs(Y2), 0.6, 0.8&G(q(b, a)&Lt(a))}; 1〉.On the other hand, De�nition 3.1 builds the redutant:
〈p(a) ← @(q(X1, a), s(Y2), 0.6, q(b, a)&Lt(a)); 1〉 where @̇(b1, b2, b3, b4) =

sup{0.7&̇Lb1, 0.5&̇Gb2, b3, 0.8&̇Gb4}.It is noteworthy that a PE-redutant an be onstruted by using thenotion of unfolding tree in the following way.De�nition 3.4 (Constrution of PE-redutants) Given a program Pand a ground atomi goal A. We an enumerate the following steps in theonstrution of a PE-redutant of A in P:(i) Construt an unfolding tree, τ , for P and A, that is, the tree obtained byunfolding the atom A in the program.(ii) Collet the set of leaves S = {D1, . . . ,Dn} in τ .(iii) Construt the rule 〈A ← @sup{D1, . . . ,Dn};⊤〉, whih is the PE-redu-tant of A in P with regard to τ .The following example presents a PE-redutant obtained from an unfoldingtree of depth 3 (all its branhes have been unfolded no more than 3 steps).Example 3.5 Let P be the program of Example 3.3 and onsider atom p(a).In the next �gure, nodes where normalization steps have been applied, produ-ing additional nodes, are remarked by boxes.8

P. Julian, G. Moreno and J. Penabad

〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.7&L0.9; {X1/b}〉

〈0.6; {X1/b}〉

R5

〈0.5&Gs(Y2); id〉

R2

〈0.5&G(0.5&Gt(a)); {Y2/a}〉

R6

〈0.5&G(0.5&G(0.9&Lp(X5))); {Y2/a}〉

R8

〈0.5&G0.8; {Y2/b}〉

〈0.5; {Y2/a}〉

R7

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4

〈0.8&G(0.9&Lt(a)); {Y4/a}〉

R5

〈0.8&G(0.9&L(0.9&Lp(X6))); {Y4/a}〉

R8After olleting the leaves of this unfolding tree, we obtain the following PE-redutant: 〈p(a)← @sup{0.6, 0.5&G(0.5&G(0.9&Lp(X5))), 0.5, 0.6, 0.8&G(0.9&L

(0.9&Lp(X6)))}; 1〉.Beause this formulation is based on partial evaluation tehniques, it anbe seen as a method that produes a speialization of a program with respetto an atomi goal, whih is able to ompute the greatest orret answer forthat goal. Moreover, although for the same program P and ground atom A,it is possible to derive distint redutants, depending on the preision of theunderlying unfolding tree, we laim that all of them are able to ompute thesame greatest orret answer for the goal A.4 Threshold Constrution of PE-RedutantsIn this setion we provide an e�ient algorithm for the onstrution of a PE-redutant based on unfolding with a set of dynami thresholds.4.1 Upper bound of a omputation and thresholdsIn the ontext of a fuzzy omputation it makes sense to disregard a derivationif the truth degree of a (partial) fuzzy omputer answer falls down below of aertain threshold value V. In our framework, this situation ould be detetedin �advane�, that is, before the fuzzy omputation has been ompleted. Thenext result provides the theoretial basis whih allows us to support this �look-ahead�.Proposition 4.1 Let 〈L,�,←1, &1, . . . ,←n, &n〉 be a multi-adjoint lattie.Then, for any x, y ∈ L, 1) x&iy � x and 2) x&iy � y.Proof. Item (1) is an easy onsequene of the de�nition of multi-adjoint lat-tie [13℄. Firstly, x&iy � x&i⊤ beause the adjoint operator &i is, by def-inition, inreasing in both arguments �that is, if x1, x2, x3 ∈ L and x1 � x2then x1&ix3 � x2&ix3 and x3&ix1 � x3&ix2� and L has a top element (⊤)�that is, y � ⊤ for all y ∈ L�. Seondly, the adjoint operator &i also ful�ll,9

P. Julian, G. Moreno and J. Penabadby de�nition of multi-adjoint lattie, that x&i⊤ = x for all x ∈ L, whihonludes the proof. The proof of item (2) is ompletely analogous. 2The following result is a orolary of Proposition 4.1 showing that inf{x, y}is an upper bound of x&y.Proposition 4.2 Let 〈L,�,←1, &1, . . . ,←n, &n〉 be a multi-adjoint lattie.Then, for any x, y ∈ L and adjoint onjuntion &i: x&iy � inf{x, y}, where
inf is the lowest of x and y.As a onsequene of Proposition 4.1, it is noteworthy that, in an admissi-ble step 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉, the omponent v&iB, introduedby the rule, is lesser than v. This is independent of the truth degree eventuallyomputed for the subgoal B. Therefore, if the goal Q is ompounded by on-juntors ful�lling the onditions of Proposition 4.1 (note that this restritionis vauously true for an atomi goal), v is an upper bound of the truth degreeomputable for Q.The above disussion leads, in a natural way, to the notion of thresholdunfolding, where only unfolding steps leading to nodes with a foreseeable truthdegree value greater than a threshold value V are allowed. In other words,when the upper bound truth degree of a node falls down the threshold value
V, the unfolding of the node is stopped. Next setion preises this onept.4.2 A onrete algorithmIn this setion we assume that Proposition 4.1 holds for all onnetives andaggregators. This does not imply a serious loss of generality in pratie.During the onstrution of a PE-redutant many unfolding steps are use-less, sine they generate leaf nodes that annot lead to the �nal omputationof the supremum. For instane, in Example 3.5, node 〈0.5; {Y2/a}〉 does notontribute, sine 0.5 � 0.6 �the truth degree of a ompletely evaluated leafnode� nor the node 〈0.5&G(0.5&G(0.9&Lp(X5))); {Y2/a}〉, sine, by Proposi-tion 4.1, even when the subsequent omplete evaluation of the subgoal p(X5)would reah the top value, we have 0.5&G(0.5&G(0.9&L⊤)) � 0.5 � 0.6. So, thePE-redutant for p(a) in the program of Example 3.5 an be written in a moreaurate/simpli�edform as: 〈p(a)← @sup{0.6, 0.8&G(0.9&L(0.9&Lp(X6)))}; 1〉.We an optimize the onstrution of PE-redutants if we use an adapta-tion of the notion of unfolding tree (De�nition 2.5) where: i) nodes ontaininformation about an upper bound of the truth degree assoiated to the goalomponent; and ii) a set of threshold values is set dynamially to limit thegeneration of useless nodes. This last feature provides great opportunities toredue the unfolding tree shape, by stopping unfolding of those nodes whosetruth degree upper bound omponent falls down a threshold value V.We propose a onstrution proedure in two phases. In the �rst phasewe build (traverse) an inomplete threshold unfolding tree, for a program Pand a goal A, trying to limit the generation of useless nodes. During the10

P. Julian, G. Moreno and J. Penabadonstrution of the tree we store the leaf nodes in a list. In the seond phase,in order to onstrut the PE-redutant, we traverse the former list and removethe leaf nodes that annot ontribute to the omputation of the supremum.As for a lassial proof proedure, three points are important: the om-putation rule (that is, the seletion funtion used to deide whih atom mustbe exploited in the next omputation step 4); the order rule (i.e., the orderin whih the rules of the program are tried for unfolding) and the searhstrategy (either a breadth-�rst or a depth-�rst). The algorithm we present isparametri with regard all these points, as well as a stop riterion to ensuretermination ofunfolding 5 .Algorithm 1 (Unfolding with a set of dynami thresholds)���� [INPUT℄: A program P and a ground atom A.(i) Set LEAV ES = [] (the empty list), and THRESHOLDS = [⊥];(ii) Build the root node 〈A; id;⊤〉 and set OPEN = [〈A; id;⊤〉];(iii) While OPEN 6= [] do:(a) Take a node, say Ni, of the list OPEN (following the searhstrategy);(b) If Ni holds the stop riterion then add the node Ni to the list
LEAV ES;() Else, assume that Ni ≡ 〈Q[E]; σ; u〉, where E is the seleted atomin Q (following the omputation rule);For eah rule Rj ≡ 〈H ← B; v〉 ∈ P (following the order rule),with θ = mgu({E = H}) and THERE IS NOT any V ∈ THRESHOLDSsuh that v < V do:
• Generate the hild node Nij ≡ 〈(Q[E/v&B])θ; σθ; inf{u, v}〉;
• Normalize the first omponent of the new node Nij. Thatis, apply a (maximal) sequene of interpretive steps:
〈((Q[E/v&B])θ; σθ〉→IS

∗〈(Q′; σθ〉. Thus, we obtain a new node
N ′

ij ≡ 〈Q
′; σθ; inf{u, v}〉.

• If Q′ = r ∈ L, then
· If THERE IS NOT any V ∈ THRESHOLDS s.t. r < V:Let W ⊆ THRESHOLDS be the (possibly empty) greatestsubset of values omparable with r suh that r > V for eah
V ∈ W;Replae the set W by {r} in THRESHOLDS.

• Else (Q′ 6= r ∈ L; i.e., the node is not ompletely evaluated),add the node N ′

ij to the list OPEN;(iv) Remove nodes 〈@(r1, . . . , rn,B1, . . . ,Bm); φ; w〉 in LEAV ES verifyingthat, there exists V ∈ THRESHOLDS, suh that w < V or
@̇(r1, . . . , rn,⊤, . . . ,⊤) < V.���� [OUTPUT℄: Lists THRESHOLDS and LEAV ES.As we have seen, the algorithm works with four lists:

4 We have reently proved in [5℄ an independene result for this hoie, as it is also usual inother non-fuzzy logi paradigms. Similarly to PROLOG, in our examples we always exploitthe left-most atom of a given goal.
5 The loal termination problem an be solved in an albeit ad ho way, by imposing anarbitrary depth bound for the unfolding, or using more re�ned approahes like methodsbased on well-founded orders or well-quasi orders.11

P. Julian, G. Moreno and J. Penabad

• OPEN , whih ontains the nodes to be unfolded;
• LEAV ES, whih ontains the nodes whih hold some termination riterion;
• THRESHOLDS, whih stores a set of nodes ompletely evaluated (notomparable among them) whih are used as thresholds.Roughly speaking, we only permit to unfold a node (by means of an admissiblestep) using rules with a truth degree v, suh that, v is omparable with none
V ∈ THRESHOLDS, or v > V for some V ∈ THRESHOLDS. Otherwise,beause a diret onsequene of Proposition 4.1, we would reah a node (goal)whose later evaluation never would produe a truth degree greater or equal to
V. The inlusion of a normalization step (that is, a sequene of interpretive un-folding steps) after eah operational unfolding step inreases the possibility ofobtaining ompletely evaluated nodes and therefore the possibility of re�ningthe set of threshold values. Thus, more useless nodes an be disregarded.Observe that the list LEAVES an be aessed either as a LIFO (stak) ora FIFO (queue) struture, whih respetively orresponds with a depth-�rstor breadth-�rst generation/ traversal of the underlying tree. The experieneshows us that there are not advantages (with regard the elimination of uselessnodes) when hoosing either a breadth-�rst or a depth �rst strategy. Wehave examples where the breadth-�rst strategy has a better performane inomparison with the depth �rst strategy and vie-versa. Also there is not anyevidene indiating if a onrete omputation rule an improve the eliminationof useless nodes. However, the order rule has a mayor impat in the removalof useless nodes. We saw that an order rule whih reorders rules on the basisof the number of atoms in their bodies, giving preferene to the fats over theother rules, has (possibly) the best behavior.Finally, if THRESHOLDS = {r1, . . . , rm} and LEAV ES = {〈Q1; φ1; w1〉
, . . . , 〈Qn; φn; wn〉} are the lists of thresholds and leaves returned by Algo-rithm 1, the PE-redutant of A in P is: 〈A←@sup{r1, . . . , rm,Q1, . . . ,Qn};⊤〉.Example 4.3 Let P be the program and the goal p(a) of Example 3.3. Assumean order rule suh that rules in P are tried in the following order for unfolding:
R1 : 〈p(Y)← ; 0.6〉

R2 : 〈q(b, a)← ; 0.9〉

R3 : 〈s(b)← ; 0.8〉

R4 : 〈p(a)←L q(X,a); 0.7〉

R5 : 〈p(a)←G s(Y); 0.5〉

R6 : 〈t(a)←L p(X); 0.9〉

R7 : 〈s(a)←G t(a); 0.5〉

R8 : 〈p(Y)←G q(b, Y)&L t(Y); 0.8〉and a stop riterion that only permits depth-3 unfolding. After we set V = 0and onstrut the root node 〈p(a); 1〉, applying the sequene of steps in Al-gorithm 1, we obtain the following depth-3 threshold unfolding tree 3 for theprogram P and the ground atom p(a) (whih, for this example, is independentof the searh strategy used in its onstrution):
3 For the sake of simpliity, we omit the substitution omponent of the nodes in the repre-sentation of the threshold unfolding tree. 12

P. Julian, G. Moreno and J. Penabad

〈p(a); 1〉

〈0.6; 0.6〉

R1

〈0.7&Lq(X2, a); 0.7〉

R4

〈0.7&L0.9; 0.7〉

〈0.6; 0.7〉

R2

〈0.8&G(q(b, a)&Lt(a)); 0.8〉

R8

〈0.8&G(0.9&Lt(a)); 0.8〉

R2

〈0.8&G(0.9&L(0.9&Lp(X3))); 0.8〉

R6Observe that, at the very beginning, the unfolding step performed with rule R1leads to the omplete evaluated leaf node 〈0.6; 0.6〉. Therefore the threshold
V is set to 0.6 and the unfolding step with the rule R5 is avoided. At level
2, the normalized leaf node 〈0.6; 0.6〉 does not alter the threshold V and sinethe omputed truth degree 0.6 is not greater than V, this node is not addedto LEAV ES. Hene, we obtain an unfolding tree smaller than the one ob-tained in Example 3.5. Finally, the Algorithm 1 returns the set of LEAV ES
{〈0.6; 0.6〉, 〈0.8&G(0.9&L(0.9&Lp(X3))); 0.8〉}, whih allows us to generate asimpler PE-redutant: 〈p(a)← @sup{0.6, 0.8&G(0.9&L(0.9&Lp(X3)))}; 1〉.4.3 A omparative exampleOur last example illustrates the bene�ts ahieved by our threshold-based teh-nique for omputing PE-redutants when it is ompared with De�nitions 3.1and 3.2. Firstly, we are interested in evidening that the original program isnot able to ompute a onrete orret answer. Seondly, we fous our at-tention in the omparison of the omputational e�ort needed to ompute andexeute di�erent forms of PE-redutants, as well as their own shapes, whihhighlights the main advantages of our algorithm.Let P be the following program, where onnetive & used in all rules hasa truth funtion de�ned by &̇(x, y) = inf{x, y}, and the underlying lattie
(L,�) is represented by the orresponding diagram.
R1 : 〈p(a)← q(X,a); α〉

R2 : 〈p(Y)← q(X;Y)&s(X)&t(Y); α〉

R3 : 〈p(a)← s(b)& t(a); ⊤〉

R4 : 〈q(b, a)← ; δ〉

R5 : 〈s(b)← ; β〉

R6 : 〈t(a)← ; γ〉

⊤

δ γ

α β

⊥An unfolding tree of depth 3 for the program P and the ground atom p(a) is:13

P. Julian, G. Moreno and J. Penabad

〈p(a); 1〉

〈α&q(X1, a); id〉

R1

〈α&δ; {X1/b}〉

〈α; {X1/b}〉

R4

〈α&(q(X2, a)&s(X2)&t(a)); {Y2/a}〉

R2

〈α&(δ&s(b)&t(a)); {Y2/a,X2/b}〉

R4

〈α&(δ&β&t(a)); {Y2/a,X2/b}〉

R5

〈⊤&(s(b)&t(a)); id〉

R3

〈⊤&(β&t(a)); id〉

R5

〈⊤&(β&γ); id〉

〈β; id〉

R6From this �gure we an onstrut the following PE-redutants exploiting dif-ferent unfolding trees of depth-1, depth-3, or depth-3 with thresholding (whihavoids the generation of the entral branh shown in the �gure), respetively:
R : 〈p(a)← @sup(α&(q(X1, a), α&q(X2, a)&s(X2)&t(a)),⊤&(s(b)&t(a)));⊤〉
R′ : 〈p(a)← @sup(α, α&(δ&(β&t(a))), β);⊤〉
R′′ : 〈p(a)← @sup(α, β);⊤〉Then, for the onsidered goal p(a), the following fats hold:(i) We know that, by the soundness property of multi-adjoint logi programs,sine both 〈α; id〉 and 〈β; id〉 are fuzzy omputed answers for P and p(a),they are orret answers too. Moreover, 〈sup{α, β}; id〉 = 〈⊤; id〉 is alsoa orret answer. However, 〈⊤; id〉 an not be omputed in P.(ii) Fortunately, the PE-redutant R allows us to obtain the fuzzy om-puted answer 〈⊤; id〉 after applying 10 omputation steps as follows:

〈p(a); id〉 →R
AS 〈@sup(α&q(X1, a), α&(q(X2, a)&s(X2)&t(a)),⊤&(s(b)&

t(a))); id〉→∗(9)
AS/IS 〈⊤; id〉. On the other hand, almost half the ompu-tational e�ort is needed when using the simpler PE-redutant R′.(iii) However, not only R′′ has the best shape, but also it proeeds with thebest omputational behaviour, by simply requiring the following pair ofomputation steps: 〈p(a); id〉 →R′′

AS 〈@sup(α, β); id〉 →IS 〈⊤; id〉.5 Conlusions and Further ResearhRedutants are ruial to ope with ompleteness in multi-adjoint logi pro-gramming. In this paper we have de�ned a method for omputing the so alledPE-redutants by using partial evaluation tehniques based on unfolding witha set of dynami thresholds. Moreover, we have disussed the bene�ts of ourtehnique by means of several omparative examples, referring to the gains ine�ieny ahieved not only when onstruting the proper PE-redutant, butalso when using it at exeution time. Nowadays we are working in the formu-lation of the set of properties ful�lled by our improved de�nition of redutant.14

P. Julian, G. Moreno and J. PenabadReferenes[1℄ R.M. Burstall and J. Darlington. A Transformation System for DevelopingReursive Programs. Journal of the ACM, 24(1):44�67, 1977.[2℄ M. Fay. First Order Uni�ation in an Equational Theory. In Pro of 4th Int'lConf. on Automated Dedution, pages 161�167, 1979.[3℄ J. Gallagher. Tutorial on Speialisation of Logi Programs. In Pro. ofPartial Evaluation and Semantis-Based Program Manipulation, Copenhagen,Denmark, June 1993, pages 88�98. ACM, New York, 1993.[4℄ N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and AutomatiProgram Generation. Prentie-Hall, Englewood Cli�s, NJ, 1993.[5℄ P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproah. Fuzzy Sets and Systems, Elsevier, 154:16�33, 2005.[6℄ P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfolding ofMulti-adjoint Logi Programs. In F. López-Fraguas, editor, Pro. of V Jornadassobre Programaión y Lenguajes, PROLE'2005, Granada, Spain, September 14-16, pages 239�248. University of Granada, 2005.[7℄ P. Julián, G. Moreno, and J. Penabad. Evaluaión Parial de ProgramasLógios Multi-adjuntos y Apliaiones. In A. Fernández, editor, Pro. of CampusMultidisiplinar en Perepión e Inteligenia, CMPI-2006, Albaete, Spain, July10-14, pages 712�724. UCLM, 2006.[8℄ J. Komorowski. An Introdution to Partial Dedution. In A. Pettorossi, editor,Meta-Programming in Logi, Uppsala, Sweden, pages 49�69. Springer LNCS 649,1992.[9℄ J. L. Lassez, M. J. Maher, and K. Marriott. Uni�ation Revisited. In J. Minker,editor, Foundations of Dedutive Databases and Logi Programming, pages 587�625. Morgan Kaufmann, Los Altos, Ca., 1988.[10℄ J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logi Programming.Journal of Logi Programming, 11:217�242, 1991.[11℄ J. Medina, M. Ojeda-Aiego, and P. Vojtá². Multi-adjoint logi programmingwith ontinuous semantis. Pro of Logi Programming and Non-MonotoniReasoning, LPNMR'01, Springer-Verlag, LNAI, 2173:351�364, 2001.[12℄ J. Medina, M. Ojeda-Aiego, and P. Vojtá². A proedural semantis for multi-adjoint logi programing. Progress in Arti�ial Intelligene, EPIA'01, Springer-Verlag, LNAI, 2258(1):290�297, 2001.[13℄ J. Medina, M. Ojeda-Aiego, and P. Vojtá². Similarity-based Uni�ation: amulti-adjoint approah. Fuzzy Sets and Systems, 146:43�62, 2004.15

	Introduction
	Preliminaries
	The multi-adjoint language
	Procedural Semantics
	Partial Evaluation of Multi-Adjoint Logic Programs

	Reductants versus PE-Reductants
	Threshold Construction of PE-Reductants
	Upper bound of a computation and thresholds
	A concrete algorithm
	A comparative example

	Conclusions and Further Research
	References

