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E�
ient Redu
tants Cal
uli using PartialEvaluation Te
hniques with Thresholding 1

Pas
ual Julián, Ginés Moreno, Jaime Penabad 2University of Castilla-La Man
ha, SpainAbstra
tRedu
tants are a useful theoreti
al tool introdu
ed for proving 
orre
tness proper-ties in the 
ontext of generalized annotated logi
 programming. This 
on
ept wasadapted to the more re
ent and �exible framework of multi-adjoint logi
 program-ming for solving a problem of in
ompleteness that arises when working with somelatti
es. In order to be 
omplete, multi-adjoint logi
 programs must be extendedwith their set of redu
tants. In general, the notion of redu
tant may introdu
ean important e�
ien
y drawba
k. In this work we provide a more re�ned versionof this 
on
ept that we 
all PE-redu
tant, by using (threshold) partial evaluationte
hniques. Our proposal is intended to be semanti
ally equivalent to the 
lassi-
al notion of redu
tant, and improves previous approa
hes at least in the followingtwo e�
ien
y 
riteria. Firstly, using the new de�nition of redu
tant, we 
an obtain
omputed answers for a given goal with a lesser 
omputational e�ort than by usingits pre
edent ones. Se
ondly, the proper 
onstru
tion of a redu
tant by means ofpartial evaluation methods, is drasti
ally improved after introdu
ing thresholdingte
hniques whi
h dynami
ally redu
e the size of the underlying unfolding trees.Key words: Fuzzy Logi
 Prog., Partial Evaluation, Redu
tants.1 Introdu
tionMulti-adjoint logi
 programming [11,12,13℄ is an extremely �exible framework
ombining fuzzy logi
 and logi
 programming. Informally speaking, a multi-adjoint logi
 program 
an be seen as a set of rules ea
h of whi
h is annotatedby a truth degree (a value of a 
omplete latti
e, for instan
e the real interval
[0, 1]) and a query to the system, that is, a goal plus a substitution (initiallythe identity substitution, denoted by id). Given a multi-adjoint logi
 pro-gram, goals are evaluated in two separate 
omputational phases. During the
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P. Julian, G. Moreno and J. Penabadoperational phase, admissible steps (a generalization of the 
lassi
al modusponens inferen
e rule) are systemati
ally applied by a ba
kward reasoningpro
edure in a similar way to 
lassi
al resolution steps in pure logi
 program-ming. More pre
isely, in an admissible step, for a sele
ted atom A in a goaland a rule 〈H←B; v〉 of the program, if there is a most general uni�er θ of
A and H , the atom A is substituted by the expression (v&B)θ, where �&�is an adjoint 
onjun
tion evaluating modus ponens. Finally, the operationalphase returns a 
omputed substitution together with an expression where allatoms have been exploited. This last expression is then interpreted under agiven latti
e during what we 
all the interpretive phase [6℄, hen
e returning apair 〈truth degree; substitution〉 whi
h is the fuzzy 
ounterpart of the 
lassi
alnotion of 
omputed answer traditionally used in pure logi
 programming.Redu
tan
ts were introdu
ed in the 
ontext of multi-adjoint logi
 program-ming to 
ope with a problem of in
ompleteness that arises for some latti
es.It might be impossible to 
ompute the greatest 
orre
t answer, if a latti
e
(L,�) is partially ordered [13℄. For instan
e, let a, b be two non 
omparableelements in L; assume that for a (ground) goal A there are only two (fa
t)rules (〈A←; a〉 and 〈A←; b〉) whose heads dire
tly mat
h with it; the �rst rule
ontributes with truth degree a, and derives the fuzzy 
omputed answer a(with empty substitution); similarly, the se
ond one 
ontributes with b, andderives the fuzzy 
omputed answer b; therefore, by the soundness theorem ofmulti-adjoint logi
 programming [13℄, both a and b are 
orre
t answers andhen
e, by de�nition of 
orre
t answer [13℄, the supremum (or lub, least upperbound) sup{a, b}, is also a 
orre
t answer; however, neither sup{a, b} nor amore general version of sup{a, b} are 
omputed answers and, therefore, 
om-pleteness is lost. The above problem 
an be solved by extending the originalprogram with a spe
ial rule 〈A←sup{a, b};⊤〉, the so 
alled redu
tant, whi
hallows us to obtain the supremum of all the 
ontributions to the goal A.The above dis
ussion shows that a multi-adjoint logi
 program, interpretedinside a partially ordered latti
e, needs to 
ontain all its redu
tants in order toguarantee the 
ompleteness property. This obviously in
reases both the sizeand exe
ution time of the �nal �
ompleted� program. However, this negativee�e
ts 
an be highly diminished if the proposed redu
tants have been partiallyevaluated before being introdu
ed in the target program: the 
omputationale�ort done (on
e) at generation time is avoided (many times) at exe
utiontime. Moreover, and what is best, if the proper partial evaluation pro
ess is
ombined with thresholding te
hniques, we also a
hieve three extra bene�ts:
• The proper 
onstru
tion of the underlying unfolding tree 
onsumes less
omputational resour
es (both memory and CPU) by e�
iently pruning someunne
essary bran
hes of the tree and hen
e, drasti
ally redu
ing its size.
• As a dire
t 
onsequen
e of the previous fa
t, the shape of the resultingredu
tant is largely simpli�ed.
• Finally, those derivation sequen
es performed at exe
ution time, needs less
omputation steps when using this re�ned notion of PE-redu
tant.2



P. Julian, G. Moreno and J. PenabadPartial evaluation (PE) [4℄ is an automati
 program transformation te
h-nique aiming at the optimization of a program with respe
t to parts of itsinput: hen
e, it is also known as program spe
ialization. It is expe
ted thatthe spe
ialized program (also 
alled residual program or partially evaluatedprogram) 
ould be exe
uted more e�
iently than the original program. Thisis be
ause the residual program is able to save some 
omputations, at exe-
ution time, that were done only on
e at PE time. To ful�ll this goal, PEuses symboli
 
omputation as well as some te
hniques provided by the �eldof program transformation [1℄, spe
ially the so 
alled unfolding transforma-tion. Unfolding is essentially the repla
ement of a 
all by its de�nition, withappropriate substitutions.As we want to support the 
omputation of redu
tants by means of PEte
hniques, in [7℄ we have introdu
ed a preliminary de�nition of the 
on
eptof PE for multi-adjoint logi
 programs and goals. The idea is to adapt, for thisnew framework, the te
hniques arisen around the �eld of partial dedu
tion ofpure logi
 programs [3,8,10℄. Following this path, we try to unfold admissiblegoals, as mu
h as possible, using the notion of unfolding rule developed in [5,6℄for multi-adjoint logi
 programs, in order to obtain an optimized (spe
ialized)version of the original program.The stru
ture of the paper is as follows. In Se
tion 2 we give some prelim-inary notions used along the whole work: subse
tions 2.1 and 2.2 summarizethe main features of multi-adjoint logi
 programming, both language syntaxand pro
edural semanti
s, whereas subse
tion 2.3 introdu
es some basi
 
on-
epts that extend, for the multi-adjoint logi
 programming framework, thenotion of partial evaluation of an atom in a program. Se
tion 3 presents aformal de�nition of PE-redu
tant and relates it with the 
lassi
al 
on
ept ofredu
tant and also with the notion of partial evaluation. Inspired by our ex-perien
e in the development of partial evaluation te
hniques, we give a morere�ned version of the 
on
ept of redu
tant 
onsidered in [13℄, whi
h we 
allPE-redu
tant. In Se
tion 4, we provide a 
on
rete algorithm for the 
on-stru
tion of PE-redu
tants whi
h is based on unfolding with a set of dynami
thresholds: subse
tion 4.1 �rstly introdu
es some preparatory results in orderto formally pro
eed in subse
tion 4.2 with the improved algorithm, whereasin subse
tion 4.3 we dis
uss the bene�ts of the resulting te
hnique by meansof some 
omparative examples. Finally, in Se
tion 5 we give our 
on
lusionsand some lines of future work.2 PreliminariesThis se
tion gives a short summary of the main features of Multi-adjointlogi
 programming (we refer the interested reader to [11,12,13℄ for a 
ompleteformulation) and formalizes the basi
 notions involved in the partial evaluationof multi-adjoint logi
 programs as introdu
ed in [7℄.3



P. Julian, G. Moreno and J. Penabad2.1 The multi-adjoint languageWe work with a �rst order language, L, 
ontaining variables, fun
tion sym-bols, predi
ate symbols, 
onstants, quanti�ers, ∀ and ∃, and several (arbitrary)
onne
tives to in
rease language expressiveness. In our fuzzy setting, we useimpli
ation 
onne
tives (←1,←2, . . . ,←m) and also other 
onne
tives whi
hare grouped under the name of �aggregators� or �aggregation operators�. Theyare used to 
ombine/propagate truth values through the rules. The generalde�nition of aggregation operators subsumes 
onjun
tive operators (denotedby &1, &2, . . . , &k), disjun
tive operators (∨1,∨2, . . . ,∨l), and average and hy-brid operators (usually denoted by @1, @2, . . . , @n). Although the 
onne
tives
&i, ∨i and @i are binary operators, we usually generalize them as fun
tionswith an arbitrary number of arguments. In the following, we often write
@(x1, . . . , xn) instead of @(x1, @(x2, . . . , @(xn−1, xn) . . .)). Aggregation oper-ators are useful to des
ribe/spe
ify user preferen
es. An aggregation operator,when interpreted as a truth fun
tion, may be an arithmeti
 mean, a weightedsum or in general any monotone appli
ation whose arguments are values of a
omplete bounded latti
e L. For example, if an aggregator @ is interpreted as
@̇(x, y, z) = (3x + 2y + z)/6, we are giving the highest preferen
e to the �rstargument, then to the se
ond, being the third argument the least signi�
ant.By de�nition, the truth fun
tion for an n-ary aggregation operator @̇ : Ln → Lis required to be monotonous and ful�lls @̇(⊤, . . . ,⊤) = ⊤, @̇(⊥, . . . ,⊥) = ⊥.Additionally, our language L 
ontains the values of a multi-adjoint lat-ti
e, 〈L,�,←1, &1, . . . ,←n, &n〉, equipped with a 
olle
tion of adjoint pairs
〈←i, &i〉, where ea
h &i is a 
onjun
tor 7 intended to the evaluation of modusponens. In general, the set of truth values L may be the 
arrier of any 
om-plete bounded latti
e but, for readability reasons, in the examples we shallsele
t L as the set of real numbers in the interval [0, 1] (whi
h is a totallyordered latti
e or 
hain).A rule is a formula H ←i B, where H is an atomi
 formula (usually 
alledthe head) and B (whi
h is 
alled the body) is a formula built from atomi
formulas B1, . . . , Bn � n ≥ 0 �, truth values of L, 
onjun
tions, disjun
tionsand aggregations. Rules whose body is ⊤ are 
alled fa
ts (usually, we willrepresent a fa
t as a rule with an empty body). A goal is a body submittedas a query to the system. Variables in a rule are assumed to be universallyquanti�ed. Roughly speaking, a multi-adjoint logi
 program is a set of pairs
〈R; α〉, where R is a rule and α is a truth degree (a value of L) expressing the
on�den
e that the user of the system has in the truth of the rule R. Observethat, truth degrees are axiomati
ally assigned (for instan
e) by an expert. Byabuse of language, we sometimes refer a tuple 〈R; α〉 as a �rule�.
7 For a formal de�nition of a multi-adjoint latti
e and the semanti
 properties of the 
on-ne
tives in L, see [13℄. It is noteworthy that a symbol &j of L does not always need to bepart of an adjoint pair. 4



P. Julian, G. Moreno and J. Penabad2.2 Pro
edural Semanti
sThe pro
edural semanti
s of the multi-adjoint logi
 language L 
an be thoughtof as an operational phase followed by an interpretive one. Similarly to [6℄, inthis se
tion we establish a 
lear separation between both phases.The operational me
hanism uses a generalization of modus ponens that,given an atomi
 goalA and a program rule 〈H←iB; v〉, if there is a substitution
θ = mgu({A = H}) 1 , we substitute the atom A by the expression (v&iB)θ.In the following, we write C[A] to denote a formula where A is a sub-expression(usually an atom) whi
h arbitrarily o

ur in the �possibly empty� 
ontext
C[]. Moreover, expression C[A/H ] means the repla
ement of A by H in 
ontext
C[]. Also we use Var(s) for referring to the set of variables o

urring in thesynta
ti
 obje
t s, whereas θ[Var(s)] denotes the substitution obtained from
θ by restri
ting its domain, Dom(θ), to Var(s).De�nition 2.1 (Admissible Steps) Let Q be a goal and let σ be a substi-tution. The pair 〈Q; σ〉 is an state and we denote by E the set of states. Givena program P, an admissible 
omputation is formalized as a state transitionsystem, whose transition relation→AS ⊆ (E ×E) is the smallest relation satis-fying the following admissible rules 2 (where we always 
onsider that A is thesele
ted atom in Q):1) 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P.2) 〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if there is no rule in P whose head uni�es A.Formulas involved in admissible 
omputation steps are renamed apart beforebeing used. Note also that se
ond rule is introdu
ed to 
ope with (possible)unsu

essful admissible derivations. When needed, we shall use the symbols
→AS1 and →AS2 to distinguish between spe
i�
 admissible steps. Also, whenrequired, the exa
t program rule used in the 
orresponding step will be anno-tated as a super�index of the →AS symbol. Also the symbols →+

AS and →∗
ASdenote, respe
tively, the transitive 
losure and the re�exive, transitive 
losureof →AS.De�nition 2.2 Let P be a program and let Q be a goal. An admissible deriva-tion is a sequen
e 〈Q; id〉 →∗

AS 〈Q
′; θ〉. When Q′ is a formula not 
ontainingatoms, the pair 〈Q′; σ〉, where σ = θ[Var(Q)], is 
alled an admissible 
om-puted answer (a.
.a.) for that derivation.If we exploit all atoms of a goal, by applying admissible steps as mu
has needed during the operational phase, then it be
omes a formula with noatoms whi
h 
an be then dire
tly interpreted in the multi-adjoint latti
e L.

1 Let mgu(E) denote the most general uni�er of an equation set E (see [9℄ for a formalde�nition of this 
on
ept).
2 Note that 
ase one subsumes the se
ond 
ase in the original de�nition presented in [13℄,sin
e a fa
t H ← is really the rule H ← ⊤. However, from a pra
ti
al point of view,when an admissible step is performed with a fa
t, we abbreviate the step �〈Q[A]; σ〉→AS

〈(Q[A/v&i⊤])θ; σθ〉� by �〈Q[A]; σ〉→AS〈(Q[A/v])θ; σθ〉�, sin
e &̇i(v,⊤) = v.5



P. Julian, G. Moreno and J. PenabadDe�nition 2.3 (Interpretive Step) Let P be a program, Q a goal and σ asubstitution. We formalize the notion of interpretive 
omputation as a statetransition system, whose transition relation →IS⊆ (E × E) is de�ned as thesmallest one satisfying: 〈Q[@(r1, r2)]; σ〉→IS〈Q[@(r1,r2)/@̇(r1,r2)];σ〉, where @̇is the truth fun
tion of 
onne
tive @ in the latti
e 〈L,�〉 asso
iated to P.We denote by→+
IS and→∗

IS the transitive 
losure and the re�exive, transitive
losure of →IS, respe
tively.De�nition 2.4 Let P be a program and 〈Q; σ〉 an a.
.a., that is, Q is a goalnot 
ontaining atoms. An interpretive derivation is a sequen
e 〈Q; σ〉 →∗
IS

〈Q′; σ〉. When Q′ = r ∈ L, being 〈L,�〉 the latti
e asso
iated to P, the state
〈r; σ〉 is 
alled a fuzzy 
omputed answer (f.
.a.) for that derivation.Usually, we refer to a 
omplete derivation as the sequen
e of admissible/ in-terpretive steps of the form 〈Q; id〉 →∗

AS 〈Q
′; σ〉 →∗

IS 〈r; σ〉 (sometimes wedenote it by 〈Q; id〉 →∗
AS/IS 〈r; σ〉) where 〈Q′; σ[Var(Q)]〉 and 〈r; σ[Var(Q)]〉are, respe
tively, the a.
.a. and the f.
.a. for the derivation.2.3 Partial Evaluation of Multi-Adjoint Logi
 ProgramsIn [7℄ we formalize the basi
 notions involved in the partial evaluation ofmulti-adjoint logi
 programs. Observe that, in 
ontrast with the operationalsemanti
s de�ned in Se
tion 2.2, the admissible and interpretive steps 
an beinterleaved in any order. In pra
ti
e we will give preferen
e to the interpretivesteps over the admissible steps during the PE pro
ess. This method resemblesthe normalization te
hnique 3 introdu
ed in the 
ontext of fun
tional logi
programming to redu
e the nondeterminism of a 
omputation [2℄. In the sequelwe 
all normalization the sequen
e of interpretive steps performed before anoperational unfolding step.The partial evaluation of an atomi
 goal is de�ned by 
onstru
ting in-
omplete sear
h trees for the goal and extra
ting the spe
ialized de�nition�usually 
alled resultants, as de�ned in [7℄� from the root-to-leaf bran
hes.Hen
e, before de�ning this 
on
ept, we pre
ise the notion of unfolding tree.De�nition 2.5 (Unfolding tree) Let P be a program and let Q be a goal.An unfolding tree τϕ for P and Q (using the 
omputation rule ϕ) is a set of

〈goal; substitution〉 pair nodes satisfying the following 
onditions:(i) The root node of τϕ is 〈Q ; id〉, where id is the identity substitution.(ii) If Ni ≡ 〈Q[A]; σ〉 is a node of τϕ and assuming ϕ(Q) = A is the sele
tedatom, then for ea
h rule Rj ≡ 〈H ← B; v〉 in P, with θ = mgu({H =
A}), Nij ≡ 〈(Q[A/v&B])θ; σθ〉 is a node of τϕ.(iii) If Ni ≡ 〈Q[@(r, r′)]; σ〉 is a node of τϕ then, Nij ≡ 〈Q[@(r, r′)/@̇(r, r′)]);
σ〉 is a node of τϕ.

3 In a normalizing narrowing strategy a term is rewritten to its normal form before anarrowing step is applied. 6



P. Julian, G. Moreno and J. PenabadAs de�ned in [5,6℄, the se
ond and third 
ases respe
tively relate to the appli-
ation of an operational unfolding step and an interpretive unfolding step.An in
omplete unfolding tree is an unfolding tree whi
h, in addition to
ompletely evaluated leaves, may also 
ontain leaves where no atom (or inter-pretable expression) has been sele
ted for a further unfolding step. That is,we are allowed to terminate a derivation at any adequate point.De�nition 2.6 (Partial evaluation of an atom) Let P be a program, Abe an atomi
 goal, and τ be a �nite (possibly in
omplete) unfolding tree for Pand A, 
ontaining at least one non-root node. Let {Qi | i = 1, . . . , k} be theleaves of the bran
hes of τ , and P ′ = {〈Aσi ← Qi ;⊤〉 | i = 1, . . . , k} the setof rules (the so 
alled resultants) asso
iated with the derivations {〈A ; id〉 →+

〈Qi ; σi〉 | i = 1, . . . , k}. Then, the set P ′ is 
alled a partial evaluation of Ain P (using τ).3 Redu
tants versus PE-Redu
tantsIn this se
tion we de�ne a new 
on
ept of redu
tant based on te
hniques
oming from the �eld of partial evaluation. The starting point is the originalde�nition presented in [13℄, where the 
lassi
al notion of redu
tant was initiallyadapted to the multi-adjoint logi
 programming framework in the followingterms:De�nition 3.1 (Redu
tant [13℄) Let P be a program, A a ground atom,and 〈Ci←i Bi; vi〉 be the (non empty) set of rules in P whose head mat
heswith A (there are θi su
h that A = Ciθi). A redu
tant for A in P is a rule
〈A← @(B1, . . . ,Bn)θ;⊤〉 where θ = θ1 . . . θn, ← is any impli
ation with anadjoint 
onjun
tor, and the truth fun
tion for the intended aggregator @ isde�ned as @̇(b1, . . . , bn) = sup{v1&̇1b1, . . . , vn&̇nbn}.Now we are going to show how De�nition 3.1 
an be improved, leading to amore �exible approximation of this 
on
ept, by using proper notions of partialevaluation. So, using an arbitrary unfolding tree, τ , for a program P and aground atom A, it is possible to 
onstru
t a more re�ned version of the notionof a redu
tan
t whi
h we 
all PE-redu
tant for A in P. The main novelty ofthe following de�nition (whi
h generalizes a very 
lose, pre
edent notion ofPE-redu
tant, that we �rstly introdu
ed in [7℄), is the fa
t that it is dire
tlybased on the set of leaves of a given unfolding tree. Similarly to the previousde�nition, in the sequel we assume that ← is the impli
ation of any adjointpair 〈←, &〉.De�nition 3.2 (PE-Redu
tant) Let P be a program, A a ground atom,and τ an unfolding tree for A in P . A PE-redu
tant for A in P with respe
tto τ , is a rule 〈A← @sup(D1, . . . ,Dn);⊤〉, where the truth fun
tion for theintended aggregator @sup is de�ned as @̇sup(d1, . . . , dn) = sup{d1, . . . , dn}, and
D1, . . . ,Dn are, respe
tively, the leaves of τ .7



P. Julian, G. Moreno and J. PenabadObserve that, in the parti
ular 
ase that the tree used in De�nition 3.2 isunfolded only one step (assuming that {〈Ci←iBi; vi〉 ∈ P | there is a θi, A =
Ciθi} is the �non empty� set of rules in P whose heads mat
h with A) then, theresulting PE-redu
tant is the rule 〈A←sup{(v1&1B1)θ1, . . . , (vn&nBn)θn};⊤〉,whi
h is very similar to the De�nition 3.1. It is easy to prove that this par-ti
ular 
ase of PE-redu
tant whi
h uses a one-step unfolding tree, 
onformswith the original de�nition of redu
tant appeared in [13℄.Example 3.3 Given the latti
e ([0, 1],�), where ��� is the usual order onreal numbers, let P be the following multi-adjoint logi
 program:

R1 : 〈p(a)←L q(X,a); 0.7〉

R2 : 〈p(a)←G s(Y ); 0.5〉

R3 : 〈p(Y )← ; 0.6〉

R4 : 〈p(Y )←G q(b, Y )&L t(Y ); 0.8〉

R5 : 〈q(b, a)← ; 0.9〉

R6 : 〈s(a)←G t(a); 0.5〉

R7 : 〈s(b)← ; 0.8〉

R8 : 〈t(a)←L p(X); 0.9〉The one-step unfolding tree for program P and atom p(a) is:
〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.5&Gs(Y2); id〉

R2

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4from whi
h we obtain the PE-redu
tant:
〈p(a)← @sup{0.7&Lq(X1, a), 0.5&Gs(Y2), 0.6, 0.8&G(q(b, a)&Lt(a))}; 1〉.On the other hand, De�nition 3.1 builds the redu
tant:
〈p(a) ← @(q(X1, a), s(Y2), 0.6, q(b, a)&Lt(a)); 1〉 where @̇(b1, b2, b3, b4) =

sup{0.7&̇Lb1, 0.5&̇Gb2, b3, 0.8&̇Gb4}.It is noteworthy that a PE-redu
tant 
an be 
onstru
ted by using thenotion of unfolding tree in the following way.De�nition 3.4 (Constru
tion of PE-redu
tants) Given a program Pand a ground atomi
 goal A. We 
an enumerate the following steps in the
onstru
tion of a PE-redu
tant of A in P:(i) Constru
t an unfolding tree, τ , for P and A, that is, the tree obtained byunfolding the atom A in the program.(ii) Colle
t the set of leaves S = {D1, . . . ,Dn} in τ .(iii) Constru
t the rule 〈A ← @sup{D1, . . . ,Dn};⊤〉, whi
h is the PE-redu
-tant of A in P with regard to τ .The following example presents a PE-redu
tant obtained from an unfoldingtree of depth 3 (all its bran
hes have been unfolded no more than 3 steps).Example 3.5 Let P be the program of Example 3.3 and 
onsider atom p(a).In the next �gure, nodes where normalization steps have been applied, produ
-ing additional nodes, are remarked by boxes.8
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〈p(a); id〉

〈0.7&Lq(X1, a); id〉

R1

〈0.7&L0.9; {X1/b}〉

〈0.6; {X1/b}〉

R5

〈0.5&Gs(Y2); id〉

R2

〈0.5&G(0.5&Gt(a)); {Y2/a}〉

R6

〈0.5&G(0.5&G(0.9&Lp(X5))); {Y2/a}〉

R8

〈0.5&G0.8; {Y2/b}〉

〈0.5; {Y2/a}〉

R7

〈0.6; {Y3/a}〉

R3

〈0.8&G(q(b, a)&Lt(a)); {Y4/a}〉

R4

〈0.8&G(0.9&Lt(a)); {Y4/a}〉

R5

〈0.8&G(0.9&L(0.9&Lp(X6))); {Y4/a}〉

R8After 
olle
ting the leaves of this unfolding tree, we obtain the following PE-redu
tant: 〈p(a)← @sup{0.6, 0.5&G(0.5&G(0.9&Lp(X5))), 0.5, 0.6, 0.8&G(0.9&L

(0.9&Lp(X6)))}; 1〉.Be
ause this formulation is based on partial evaluation te
hniques, it 
anbe seen as a method that produ
es a spe
ialization of a program with respe
tto an atomi
 goal, whi
h is able to 
ompute the greatest 
orre
t answer forthat goal. Moreover, although for the same program P and ground atom A,it is possible to derive distin
t redu
tants, depending on the pre
ision of theunderlying unfolding tree, we 
laim that all of them are able to 
ompute thesame greatest 
orre
t answer for the goal A.4 Threshold Constru
tion of PE-Redu
tantsIn this se
tion we provide an e�
ient algorithm for the 
onstru
tion of a PE-redu
tant based on unfolding with a set of dynami
 thresholds.4.1 Upper bound of a 
omputation and thresholdsIn the 
ontext of a fuzzy 
omputation it makes sense to disregard a derivationif the truth degree of a (partial) fuzzy 
omputer answer falls down below of a
ertain threshold value V. In our framework, this situation 
ould be dete
tedin �advan
e�, that is, before the fuzzy 
omputation has been 
ompleted. Thenext result provides the theoreti
al basis whi
h allows us to support this �look-ahead�.Proposition 4.1 Let 〈L,�,←1, &1, . . . ,←n, &n〉 be a multi-adjoint latti
e.Then, for any x, y ∈ L, 1) x&iy � x and 2) x&iy � y.Proof. Item (1) is an easy 
onsequen
e of the de�nition of multi-adjoint lat-ti
e [13℄. Firstly, x&iy � x&i⊤ be
ause the adjoint operator &i is, by def-inition, in
reasing in both arguments �that is, if x1, x2, x3 ∈ L and x1 � x2then x1&ix3 � x2&ix3 and x3&ix1 � x3&ix2� and L has a top element (⊤)�that is, y � ⊤ for all y ∈ L�. Se
ondly, the adjoint operator &i also ful�ll,9
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e, that x&i⊤ = x for all x ∈ L, whi
h
on
ludes the proof. The proof of item (2) is 
ompletely analogous. 2The following result is a 
orolary of Proposition 4.1 showing that inf{x, y}is an upper bound of x&y.Proposition 4.2 Let 〈L,�,←1, &1, . . . ,←n, &n〉 be a multi-adjoint latti
e.Then, for any x, y ∈ L and adjoint 
onjun
tion &i: x&iy � inf{x, y}, where
inf is the lowest of x and y.As a 
onsequen
e of Proposition 4.1, it is noteworthy that, in an admissi-ble step 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉, the 
omponent v&iB, introdu
edby the rule, is lesser than v. This is independent of the truth degree eventually
omputed for the subgoal B. Therefore, if the goal Q is 
ompounded by 
on-jun
tors ful�lling the 
onditions of Proposition 4.1 (note that this restri
tionis va
uously true for an atomi
 goal), v is an upper bound of the truth degree
omputable for Q.The above dis
ussion leads, in a natural way, to the notion of thresholdunfolding, where only unfolding steps leading to nodes with a foreseeable truthdegree value greater than a threshold value V are allowed. In other words,when the upper bound truth degree of a node falls down the threshold value
V, the unfolding of the node is stopped. Next se
tion pre
ises this 
on
ept.4.2 A 
on
rete algorithmIn this se
tion we assume that Proposition 4.1 holds for all 
onne
tives andaggregators. This does not imply a serious loss of generality in pra
ti
e.During the 
onstru
tion of a PE-redu
tant many unfolding steps are use-less, sin
e they generate leaf nodes that 
annot lead to the �nal 
omputationof the supremum. For instan
e, in Example 3.5, node 〈0.5; {Y2/a}〉 does not
ontribute, sin
e 0.5 � 0.6 �the truth degree of a 
ompletely evaluated leafnode� nor the node 〈0.5&G(0.5&G(0.9&Lp(X5))); {Y2/a}〉, sin
e, by Proposi-tion 4.1, even when the subsequent 
omplete evaluation of the subgoal p(X5)would rea
h the top value, we have 0.5&G(0.5&G(0.9&L⊤)) � 0.5 � 0.6. So, thePE-redu
tant for p(a) in the program of Example 3.5 
an be written in a morea

urate/simpli�edform as: 〈p(a)← @sup{0.6, 0.8&G(0.9&L(0.9&Lp(X6)))}; 1〉.We 
an optimize the 
onstru
tion of PE-redu
tants if we use an adapta-tion of the notion of unfolding tree (De�nition 2.5) where: i) nodes 
ontaininformation about an upper bound of the truth degree asso
iated to the goal
omponent; and ii) a set of threshold values is set dynami
ally to limit thegeneration of useless nodes. This last feature provides great opportunities toredu
e the unfolding tree shape, by stopping unfolding of those nodes whosetruth degree upper bound 
omponent falls down a threshold value V.We propose a 
onstru
tion pro
edure in two phases. In the �rst phasewe build (traverse) an in
omplete threshold unfolding tree, for a program Pand a goal A, trying to limit the generation of useless nodes. During the10
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onstru
tion of the tree we store the leaf nodes in a list. In the se
ond phase,in order to 
onstru
t the PE-redu
tant, we traverse the former list and removethe leaf nodes that 
annot 
ontribute to the 
omputation of the supremum.As for a 
lassi
al proof pro
edure, three points are important: the 
om-putation rule (that is, the sele
tion fun
tion used to de
ide whi
h atom mustbe exploited in the next 
omputation step 4 ); the order rule (i.e., the orderin whi
h the rules of the program are tried for unfolding) and the sear
hstrategy (either a breadth-�rst or a depth-�rst). The algorithm we present isparametri
 with regard all these points, as well as a stop 
riterion to ensuretermination ofunfolding 5 .Algorithm 1 (Unfolding with a set of dynami
 thresholds)���� [INPUT℄: A program P and a ground atom A.(i) Set LEAV ES = [] (the empty list), and THRESHOLDS = [⊥];(ii) Build the root node 〈A; id;⊤〉 and set OPEN = [〈A; id;⊤〉];(iii) While OPEN 6= [] do:(a) Take a node, say Ni, of the list OPEN (following the sear
hstrategy);(b) If Ni holds the stop 
riterion then add the node Ni to the list
LEAV ES;(
) Else, assume that Ni ≡ 〈Q[E]; σ; u〉, where E is the sele
ted atomin Q (following the 
omputation rule);For ea
h rule Rj ≡ 〈H ← B; v〉 ∈ P (following the order rule),with θ = mgu({E = H}) and THERE IS NOT any V ∈ THRESHOLDSsu
h that v < V do:
• Generate the 
hild node Nij ≡ 〈(Q[E/v&B])θ; σθ; inf{u, v}〉;
• Normalize the first 
omponent of the new node Nij. Thatis, apply a (maximal) sequen
e of interpretive steps:
〈((Q[E/v&B])θ; σθ〉→IS

∗〈(Q′; σθ〉. Thus, we obtain a new node
N ′

ij ≡ 〈Q
′; σθ; inf{u, v}〉.

• If Q′ = r ∈ L, then
· If THERE IS NOT any V ∈ THRESHOLDS s.t. r < V:Let W ⊆ THRESHOLDS be the (possibly empty) greatestsubset of values 
omparable with r su
h that r > V for ea
h
V ∈ W;Repla
e the set W by {r} in THRESHOLDS.

• Else (Q′ 6= r ∈ L; i.e., the node is not 
ompletely evaluated),add the node N ′

ij to the list OPEN;(iv) Remove nodes 〈@(r1, . . . , rn,B1, . . . ,Bm); φ; w〉 in LEAV ES verifyingthat, there exists V ∈ THRESHOLDS, su
h that w < V or
@̇(r1, . . . , rn,⊤, . . . ,⊤) < V.���� [OUTPUT℄: Lists THRESHOLDS and LEAV ES.As we have seen, the algorithm works with four lists:

4 We have re
ently proved in [5℄ an independen
e result for this 
hoi
e, as it is also usual inother non-fuzzy logi
 paradigms. Similarly to PROLOG, in our examples we always exploitthe left-most atom of a given goal.
5 The lo
al termination problem 
an be solved in an albeit ad ho
 way, by imposing anarbitrary depth bound for the unfolding, or using more re�ned approa
hes like methodsbased on well-founded orders or well-quasi orders.11
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• OPEN , whi
h 
ontains the nodes to be unfolded;
• LEAV ES, whi
h 
ontains the nodes whi
h hold some termination 
riterion;
• THRESHOLDS, whi
h stores a set of nodes 
ompletely evaluated (not
omparable among them) whi
h are used as thresholds.Roughly speaking, we only permit to unfold a node (by means of an admissiblestep) using rules with a truth degree v, su
h that, v is 
omparable with none
V ∈ THRESHOLDS, or v > V for some V ∈ THRESHOLDS. Otherwise,be
ause a dire
t 
onsequen
e of Proposition 4.1, we would rea
h a node (goal)whose later evaluation never would produ
e a truth degree greater or equal to
V. The in
lusion of a normalization step (that is, a sequen
e of interpretive un-folding steps) after ea
h operational unfolding step in
reases the possibility ofobtaining 
ompletely evaluated nodes and therefore the possibility of re�ningthe set of threshold values. Thus, more useless nodes 
an be disregarded.Observe that the list LEAVES 
an be a

essed either as a LIFO (sta
k) ora FIFO (queue) stru
ture, whi
h respe
tively 
orresponds with a depth-�rstor breadth-�rst generation/ traversal of the underlying tree. The experien
eshows us that there are not advantages (with regard the elimination of uselessnodes) when 
hoosing either a breadth-�rst or a depth �rst strategy. Wehave examples where the breadth-�rst strategy has a better performan
e in
omparison with the depth �rst strategy and vi
e-versa. Also there is not anyeviden
e indi
ating if a 
on
rete 
omputation rule 
an improve the eliminationof useless nodes. However, the order rule has a mayor impa
t in the removalof useless nodes. We saw that an order rule whi
h reorders rules on the basisof the number of atoms in their bodies, giving preferen
e to the fa
ts over theother rules, has (possibly) the best behavior.Finally, if THRESHOLDS = {r1, . . . , rm} and LEAV ES = {〈Q1; φ1; w1〉
, . . . , 〈Qn; φn; wn〉} are the lists of thresholds and leaves returned by Algo-rithm 1, the PE-redu
tant of A in P is: 〈A←@sup{r1, . . . , rm,Q1, . . . ,Qn};⊤〉.Example 4.3 Let P be the program and the goal p(a) of Example 3.3. Assumean order rule su
h that rules in P are tried in the following order for unfolding:
R1 : 〈p(Y )← ; 0.6〉

R2 : 〈q(b, a)← ; 0.9〉

R3 : 〈s(b)← ; 0.8〉

R4 : 〈p(a)←L q(X,a); 0.7〉

R5 : 〈p(a)←G s(Y ); 0.5〉

R6 : 〈t(a)←L p(X); 0.9〉

R7 : 〈s(a)←G t(a); 0.5〉

R8 : 〈p(Y )←G q(b, Y )&L t(Y ); 0.8〉and a stop 
riterion that only permits depth-3 unfolding. After we set V = 0and 
onstru
t the root node 〈p(a); 1〉, applying the sequen
e of steps in Al-gorithm 1, we obtain the following depth-3 threshold unfolding tree 3 for theprogram P and the ground atom p(a) (whi
h, for this example, is independentof the sear
h strategy used in its 
onstru
tion):
3 For the sake of simpli
ity, we omit the substitution 
omponent of the nodes in the repre-sentation of the threshold unfolding tree. 12
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〈p(a); 1〉

〈0.6; 0.6〉

R1

〈0.7&Lq(X2, a); 0.7〉

R4

〈0.7&L0.9; 0.7〉

〈0.6; 0.7〉

R2

〈0.8&G(q(b, a)&Lt(a)); 0.8〉

R8

〈0.8&G(0.9&Lt(a)); 0.8〉

R2

〈0.8&G(0.9&L(0.9&Lp(X3))); 0.8〉

R6Observe that, at the very beginning, the unfolding step performed with rule R1leads to the 
omplete evaluated leaf node 〈0.6; 0.6〉. Therefore the threshold
V is set to 0.6 and the unfolding step with the rule R5 is avoided. At level
2, the normalized leaf node 〈0.6; 0.6〉 does not alter the threshold V and sin
ethe 
omputed truth degree 0.6 is not greater than V, this node is not addedto LEAV ES. Hen
e, we obtain an unfolding tree smaller than the one ob-tained in Example 3.5. Finally, the Algorithm 1 returns the set of LEAV ES
{〈0.6; 0.6〉, 〈0.8&G(0.9&L(0.9&Lp(X3))); 0.8〉}, whi
h allows us to generate asimpler PE-redu
tant: 〈p(a)← @sup{0.6, 0.8&G(0.9&L(0.9&Lp(X3)))}; 1〉.4.3 A 
omparative exampleOur last example illustrates the bene�ts a
hieved by our threshold-based te
h-nique for 
omputing PE-redu
tants when it is 
ompared with De�nitions 3.1and 3.2. Firstly, we are interested in eviden
ing that the original program isnot able to 
ompute a 
on
rete 
orre
t answer. Se
ondly, we fo
us our at-tention in the 
omparison of the 
omputational e�ort needed to 
ompute andexe
ute di�erent forms of PE-redu
tants, as well as their own shapes, whi
hhighlights the main advantages of our algorithm.Let P be the following program, where 
onne
tive & used in all rules hasa truth fun
tion de�ned by &̇(x, y) = inf{x, y}, and the underlying latti
e
(L,�) is represented by the 
orresponding diagram.
R1 : 〈p(a)← q(X,a); α〉

R2 : 〈p(Y )← q(X;Y )&s(X)&t(Y ); α〉

R3 : 〈p(a)← s(b)& t(a); ⊤〉

R4 : 〈q(b, a)← ; δ〉

R5 : 〈s(b)← ; β〉

R6 : 〈t(a)← ; γ〉

⊤

δ γ

α β

⊥An unfolding tree of depth 3 for the program P and the ground atom p(a) is:13
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〈p(a); 1〉

〈α&q(X1, a); id〉

R1

〈α&δ; {X1/b}〉

〈α; {X1/b}〉

R4

〈α&(q(X2, a)&s(X2)&t(a)); {Y2/a}〉

R2

〈α&(δ&s(b)&t(a)); {Y2/a,X2/b}〉

R4

〈α&(δ&β&t(a)); {Y2/a,X2/b}〉

R5

〈⊤&(s(b)&t(a)); id〉

R3

〈⊤&(β&t(a)); id〉

R5

〈⊤&(β&γ); id〉

〈β; id〉

R6From this �gure we 
an 
onstru
t the following PE-redu
tants exploiting dif-ferent unfolding trees of depth-1, depth-3, or depth-3 with thresholding (whi
havoids the generation of the 
entral bran
h shown in the �gure), respe
tively:
R : 〈p(a)← @sup(α&(q(X1, a), α&q(X2, a)&s(X2)&t(a)),⊤&(s(b)&t(a)));⊤〉
R′ : 〈p(a)← @sup(α, α&(δ&(β&t(a))), β);⊤〉
R′′ : 〈p(a)← @sup(α, β);⊤〉Then, for the 
onsidered goal p(a), the following fa
ts hold:(i) We know that, by the soundness property of multi-adjoint logi
 programs,sin
e both 〈α; id〉 and 〈β; id〉 are fuzzy 
omputed answers for P and p(a),they are 
orre
t answers too. Moreover, 〈sup{α, β}; id〉 = 〈⊤; id〉 is alsoa 
orre
t answer. However, 〈⊤; id〉 
an not be 
omputed in P.(ii) Fortunately, the PE-redu
tant R allows us to obtain the fuzzy 
om-puted answer 〈⊤; id〉 after applying 10 
omputation steps as follows:

〈p(a); id〉 →R
AS 〈@sup(α&q(X1, a), α&(q(X2, a)&s(X2)&t(a)),⊤&(s(b)&

t(a))); id〉→∗(9)
AS/IS 〈⊤; id〉. On the other hand, almost half the 
ompu-tational e�ort is needed when using the simpler PE-redu
tant R′.(iii) However, not only R′′ has the best shape, but also it pro
eeds with thebest 
omputational behaviour, by simply requiring the following pair of
omputation steps: 〈p(a); id〉 →R′′

AS 〈@sup(α, β); id〉 →IS 〈⊤; id〉.5 Con
lusions and Further Resear
hRedu
tants are 
ru
ial to 
ope with 
ompleteness in multi-adjoint logi
 pro-gramming. In this paper we have de�ned a method for 
omputing the so 
alledPE-redu
tants by using partial evaluation te
hniques based on unfolding witha set of dynami
 thresholds. Moreover, we have dis
ussed the bene�ts of ourte
hnique by means of several 
omparative examples, referring to the gains ine�
ien
y a
hieved not only when 
onstru
ting the proper PE-redu
tant, butalso when using it at exe
ution time. Nowadays we are working in the formu-lation of the set of properties ful�lled by our improved de�nition of redu
tant.14
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