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Abstract. This paper describes how high level implementations of (need-
ed) narrowing into Prolog can be improved by analysing definitional
trees. First, we introduce a refined representation of definitional trees
that handles properly the knowledge about the inductive positions of
a pattern. The aim is to take advantage of the new representation of
definitional trees to improve the aforementioned kind of implementation
systems. Second, we introduce selective unfolding transformations, on
determinate atom calls in the Prolog code, by examining the existence
of what we call “deterministic (sub)branches” in a definitional tree. As
a result of this analysis, we define some generic algorithms that allow
us to compile a functional logic program into a set of Prolog clauses
which increases determinism and incorporates some refinements that are
obtained by ad hoc artifices in other similar implementations of func-
tional logic languages. We also present and discuss the advantages of our
proposals by means of some simple examples.
Keywords: Functional logic programming, narrowing strategies, imple-
mentation of functional logic languages, program transformation.

1 Introduction

Functional logic programming [12] aims to implement programming languages
that integrate the best features of both functional programming and logic pro-
gramming. Most of the approaches to the integration of functional and logic
languages consider term rewriting systems as programs and some narrowing
strategy as complete operational mechanism. Laziness is a valuable feature of
functional logic languages, since it increases the expressive power of this kind
of languages: it supports computations with infinite data structures and a mod-
ular programming style. Among the different lazy narrowing strategies, needed
narrowing [6] has been postulated optimal from several points of view. Needed
narrowing addresses computations by means of some structures, namely defini-
tional trees [2], which contain all the information about the program rules. These
1 Supported by CICYT TIC 2001-2705-C03-01, Acción Integrada Hispano-Italiana
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structures allow us to select a position of the term which is being evaluated and
this position points out to a reducible subterm that is “unavoidable” to reduce in
order to obtain the result of the computation. It is accepted that the framework
for declarative programing based on non–deterministic lazy functions of [18] also
uses definitional trees as part of its computational mechanism. In recent years,
a great effort has been done to provide the integrated languages with high level
implementations of this computational model into Prolog (see for instance [5,
7, 13, 16] and [19]). This paper investigates how an analysis of definitional trees
can introduce improvements in the quality of the Prolog code generated by these
implementation systems.

The paper is organized as follows: Section 2 recalls some basic notions we use
in the rest of the sections. In Section 3 we describe a refined representation of
definitional trees and we give an algorithm for their construction in the style of
[15]. Section 4 introduces two new translation techniques: Section 4.1 discusses
how to take advantage of the new representation of definitional trees to improve
(needed) narrowing implementations; Section 4.2 presents an algorithm, guided
by the structure of a definitional tree, which is able to produce the same effect as
if a determinate unfolding transformation was applied on the compiled Prolog
code. Section 5 presents some experiments that show the effectiveness of our
proposals. Section 6 discuses the relation of our techniques to other research on
functional logic programming and logic programming. Finally, Section 7 contains
our conclusions.

2 Preliminaries

We consider first order expressions or terms built from symbols of the set of
variables X and the set of function symbols F in the usual way. The set of terms
is denoted by T (F ,X ). We sometimes write f/n ∈ F to denote that f is a
n–ary function symbol. If t is a term different from a variable, Root(t) is the
function symbol heading t, also called the root symbol of t. A term is linear if
it does not contain multiple occurrences of the same variable. Var(o) is the set
of variables occurring in the syntactic object o. We write on for the sequence of
objects o1, . . . , on.

A substitution σ is a mapping from the set of variables to the set of terms,
with finite domain Dom(σ) = {x ∈ X | σ(x) 6= x}. We denote the identity
substitution by id. We define the composition of two substitutions σ and θ,
denoted σ ◦ θ as usual: σ ◦ θ(x) = σ̂(θ(x)), where σ̂ is the extension of σ to the
domain of the terms. A renaming is a substitution ρ such that there exists the
inverse substitution ρ−1 and ρ ◦ ρ−1 = ρ−1 ◦ ρ = id.

A term t is more general than s (or s is an instance of t), in symbols t ≤ s,
if (∃σ) s = σ(t). Two terms t and t′ are variants if there exists a renaming ρ
such that t′ = ρ(t). We say that t is strictly more general than s, denoted t < s,
if t ≤ s and t and s are not variants. The quasi–order relation “≤” on terms is
often called subsumption order and “<” is called strict subsumption order.



Positions of a term t (also called occurrences) are represented by sequences
of natural numbers used to address subterms of t. The concatenation of the
sequences p and w is denoted by p.w. Two positions p and p′ of t are comparable
if (∃w) p′ = p.w or p = p′.w, otherwise are disjoint positions. Given a position
p of t, t|p denotes the subterm of t at position p and t[s]p denotes the result of
replacing the subterm t|p by the term s. Let pn be a sequence of disjoint positions
of a term t, t[s1]p1 . . . [sn]pn

denotes the result of simultaneously replacing each
subterm t|pi by the term si, with i ∈ {1, . . . , n}.

2.1 Term rewriting systems

We limit the discussion to unconditional term rewriting systems1. A rewrite rule
is a pair l → r with l, r ∈ T (F ,X ), l 6∈ X , and Var(r) ⊆ Var(l). The terms l and
r are called the left–hand side (lhs) and right–hand side (rhs) of the rewrite rule,
respectively. A term rewriting system (TRS) R is a finite set of rewrite rules.

We are specially interested in TRSs whose associate signature F can be
partitioned into two disjoint sets F = C ]D where D = {Root(l) | (l → r) ∈ R}
and C = F \D. Symbols in C are called constructors and symbols in D are called
defined functions or operations. Terms built from symbols of the set of variables
X and the set of constructors C are called constructor terms. A pattern is a term
of the form f(dn) where f/n ∈ D and dn are constructor terms. A term f(xn),
where xn are different variables, is called a generic pattern. A TRS is said to be
constructor–based (CB) if the lhs of its rules are patterns. For CB TRSs, a term
t is a head normal form (hnf) if t is a variable or Root(t) ∈ C.

A TRS is said to be left–linear if for each rule l → r in the TRS, the lhs l
is a linear term. We say that a TRS is non–ambiguous or non–overlapping if it
does not contain critical pairs (see [9] for a standard definition of a critical pair).
Left–linear and non–ambiguous TRSs are called orthogonal TRSs.

Inductively sequential TRSs are a proper subclass of CB orthogonal TRSs.
The definition of this class of programs make use of the notion of definitional tree.
For the sake of simplicity and because further complications are irrelevant for our
study, in the following definition, we ignore the exempt nodes that appear in the
original definition of [2] and also the or–nodes of [16] used in the implementation
of Curry [15]. Note also, that or–nodes lead to parallel definitional trees and thus
out of the class of inductively sequential systems.

Definition 1. [Partial definitional tree]
Given a CB TRS R, P is a partial definitional tree with pattern π if and only
if one of the following cases hold:

1. P = rule(π, l → r), where π is a pattern and l → r is a rewrite rule in R
such that π is a variant of l.

2. P = branch(π, o,Pk), where π is a pattern, o is a variable position of π
(called inductive position), ck are different constructors, for some k > 0, and

1 This is not a true limitation for the expressiveness of a programming language re-
laying on this class of term rewriting systems [4].
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Fig. 1. Definitional trees for the function “f”of Example 1

for all i ∈ {1, . . . , k}, Pi is a partial definitional tree with pattern π[ci(xn)]o,
where n is the arity of ci and xn are new variables.

From a declarative point of view, a partial definitional tree P can be seen as
a set of linear patterns partially ordered by the strict subsumption order “<”
[3]. Given a defined function f/n, a definitional tree of f is a partial definitional
tree whose pattern is a generic pattern and its leaves contain variants of all the
rewrite rules defining f .

Example 1. Given the rules defining the function f/3

R1 : f(a, b, X) → r1, R2 : f(b, a, c) → r2, R3 : f(c, b, X) → r3.

a definitional tree of f is:

branch(f(X1, X2, X3), 1,
branch(f(a,X2, X3), 2, rule(f(a, b, X3), R1)),
branch(f(b, X2, X3), 2, branch(f(b, a, X3), 2, rule(f(b, a, c), R2))),
branch(f(c,X2, X3), 2, rule(f(c, b, X3), R3)))

Note that there can be more than one definitional tree for a defined function. It is
often convenient and simplifies understanding to provide a graphic representation
of definitional trees, where each node is marked with a pattern and the inductive
position in branches is surrounded by a box. Figure 1(a) illustrates this concept.

Definition 2. [Inductively Sequential TRS]
A defined function f is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions are
inductively sequential.

In this paper we are mainly interested in inductively sequential TRSs (or proper
subclasses of them) which are called programs.

2.2 Definitional trees and Narrowing Implementations into Prolog

Most of the relevant implementations of functional logic languages, which use
needed narrowing as operational mechanism, are based on the compilation of the



programs written in these languages into Prolog [7, 13, 16, 17]. These implemen-
tation systems may be thought as a translation process that essentially consists
in the following:

1. An algorithm to transform the program rules in a functional logic program
into a set of definitional trees (See [16] and [15] for some of those algorithms).

2. An algorithm that takes the definitional trees as an input parameter and
visits their nodes, generating a Prolog clause for each visited node. Since
definitional trees contain all the information about the original program as
well as information to guide the (optimal) pattern matching process during
the evaluation of expressions, the set of generated Prolog clauses is able to
simulate the intended narrowing strategy being implemented.

In the case of functional logic programs with a needed narrowing semantics, a
generic algorithm for the translation of definitional trees into a set of clauses is
given in [13]. When we apply that algorithm to the definitional tree of function
f in Example 1, we obtain the following set of Prolog clauses:

% Clause for the root node: it exploits the first inductive position

f(X1, X2, X3, H) :- hnf(X1, HX1), f_1(HX1, X2, X3, H).

% Clauses for the remaining nodes:

f_1(a, X2, X3, H):- hnf(X2, HX2), f_1_a_2(HX2, X3, H).

f_1_a_2(b, X3, H):- hnf(r1, H).

f_1(b, X2, X3, H):- hnf(X2, HX2), f_1_b_2(HX2, X3, H).

f_1_b_2(a, X3, H):- hnf(X3, HX3), f_1_b_2_a_3(HX3, H).

f_1_b_2_a_3(c, H):- hnf(r2, H).

f_1(c, X2, X3, H):- hnf(X2, HX2), f_1_c_2(HX2, X3, H).

f_1_c_2(b, X3, H):- hnf(r3, H).

where hnf(T, H) is a predicate that is true when H is the hnf of a term T. For
this example, the clauses defining the predicate hnf are:

% Evaluation to head normal form (hnf).

hnf(T, T) :- var(T), !.

hnf(f(X1, X2, X3), H) :- !, f(X1, X2, X3, H).

hnf(T, T). % otherwise the term T is a hnf;

The meaning of these set of clauses is as follows. For evaluating a term t =
f(t1, t2, t3) to a hnf, first, it is necessary to evaluate (to a hnf) the subterms of t
at the inductive positions of the patterns in the definitional tree associated with
f (in the order dictated by that definitional tree — see Figure 1(a)). Hence, for
our example: we compute the hnf of t1 and then the hnf of t2; if b is the hnf
of t1 and a is the hnf of t2, we have to compute the hnf of t3; if the hnf of t3
is c then the hnf of t will be the hnf of r2 else the computation fails (see the
sixth clause). On the other hand, if the hnf of t1 is a or c it suffices to evaluate
t2 to a hnf, disregarding t3, in order to obtain the final value. This evaluation
mechanism conforms with the needed narrowing strategy of [6], as it has been
formally demonstrated in [1].



3 A Refined Representation of Definitional Trees

As we have just seen, building definitional trees is the first step of the compi-
lation process in high level implementations of needed narrowing into Prolog.
Therefore, providing a suitable representation structure for the definitional trees
associated with a functional logic program may be an important task in or-
der to improve those systems. In this section we give a refined representation
of definitional trees that saves memory allocation and is the basis for further
improvements.

It is noteworthy that the function f of Example 1 has two definitional trees:
the one depicted in Figure 1(a) and a second one obtained by exploiting po-
sition 2 of the generic pattern f(X1, X2, X3). Hence, this generic pattern has
two inductive positions. As we are going to show, we can take advantage of this
situation if we “simultaneously” exploit these two inductive positions. The main
idea of the refinement is as follows: when a pattern has several inductive posi-
tions, exploit them altogether. Therefore we need a criterion to detect inductive
positions. This criterion exists and it is based on the concept of uniformly de-
manded position, which was introduced into the functional logic setting by J.
Moreno-Navarro, and M. Rodŕıguez-Artalejo et al. (see, for instance, [16]).

Definition 3. [Uniformly demanded position]
Given a pattern π and a TRS R, Let be Rπ = {l → r|(l → r) ∈ R ∧ π ≤ l}. A
variable position p of the pattern π is said to be: (i) demanded by a lhs l of a
rule in Rπ if Root(l|p) ∈ C. (ii) uniformly demanded by Rπ if p is demanded by
all lhs in Rπ.

We write UDPos(π) to denote the set of uniformly demanded positions of the
pattern π. The following proposition establishes a necessary condition for a po-
sition of a pattern to be an inductive position.

Proposition 1. Let R be an inductively sequential TRS and let π be the pattern
of a branch node of a definitional tree P of a function defined in R. If o is an
inductive position of π then o is uniformly demanded by Rπ.

The converse proposition is more involved but not difficult to establish. In the
following, given two partial definitional trees P1 and P2, we say P1 � P2 if and
only if P1 = P2 or P1 ≺ P2, where P1 ≺ P2 if P1 is a proper subtree of P2.

Proposition 2. Let R be an inductively sequential TRS. Let P a partial def-
initional tree, with pattern π, and o a variable position of π. If o is uniformly
demanded by Rπ then there exists a partial definitional tree P ′ � P, with pattern
π′, such that o is an inductive position of π′.

Hence, the concept of uniformly demanded position and Proposition 1 give
us a syntactic criterion to detect if a variable position of a pattern is an inductive
position or not and, therefore, a guideline to built a definitional tree: (i) Given
a branch node, select a uniformly demanded position of its pattern; fix it as
an inductive position of the branch node and generate the corresponding child
nodes. (ii) If the node doesn’t have uniformly demanded positions then there are



two possibilities: the node is a leaf node, if it is a variant of a lhs of the considered
TRS, or it is a “failure” node, and it is impossible to build the definitional tree.
The following algorithm, in the style of [15], uses this scheme to build a refined
partial definitional tree rpdt(π,Rπ) for a pattern π and rules Rπ = {l → r |
(l → r) ∈ R ∧ π ≤ l}:

1. If UDPos(π) = ∅ and there is only one rule (l → r) ∈ Rπ and a renaming ρ
such that π = ρ(l):

rpdt(π,Rπ) = rule(π, ρ(l) → ρ(r));

2. If UDPos(π) 6= ∅ and for all (ci1 , . . . , cim
) ∈ Cπ, Pi = rpdt(πi,Rπi

) 6= fail:

rpdt(π,Rπ) = branch(π, om,Pk);

where om is the sequence of uniformly demanded positions in UDPos(π),
Cπ = {(ci1 , . . . , cim

)|(li → ri) ∈ Rπ ∧ Root(li|o1) = ci1 ∧ . . . ∧ Root(li|om
) =

cim
}, k = |Cπ| > 0, πi = π[ci1(xni1

)]o1 . . . [cim(xnim
)]om and xni1

, . . . , xnim

are new variables.
3. Otherwise, rpdt(π,Rπ) = fail.

Given an inductively sequential TRS R and a n–ary defined function f in R,
the definitional tree of f is rdt(f,R) = rpdt(π0,Rπ0) where π0 = f(xn). Note
that, for an algorithm like the one described in [15] the selection of the inductive
positions of the pattern π is non–deterministic, if UDPos(π) 6= ∅. Therefore, it is
possible to build different definitional trees for an inductively sequential function,
depending on the inductive position which is selected. On the contrary, our al-
gorithm deterministically produces a single definitional tree for each inductively
sequential function. Note also that it matches the more informal algorithm that
appears in [15] when, for each branch node, there is only one inductive position.

For the defined function f in Example 1, the last algorithm builds the fol-
lowing definitional tree:

branch(f(X1, X2, X3), (1, 2),
rule(f(a, b, X3), R1),
branch(f(b, a, X3), (3), rule(f(b, a, c), R2)),
rule(f(c, b, X3), R3)

which is depicted in Figure 1(b). As we said, for this example, the standard
algorithm of [15] may build two definitional trees for f (depending on whether
position 1 or position 2 is selected as the inductive position of the generic pattern
f(X1, X2, X3)). Both of these trees have eight nodes, while the new representa-
tion cuts the number of nodes of the definitional tree to five nodes. We claim
that the new representation reduces the number of nodes in general and, also,
the number of possible definitional trees associated with a function (actually,
there is only one refined definitional tree for each defined function).

As it has been proposed in [7], it is possible to obtain a simpler translation
scheme of functional logic programs into Prolog if definitional trees are first
compiled into case expressions. That is, functions are defined by only one rule



where the lhs is a generic pattern and the rhs contains case expressions to specify
the pattern matching of actual arguments. The use of case expressions doesn’t
invalidate our argumentation. Thus, we can transform the last refined definitional
tree in the following case expression:

f(X1, X2, X3) = case (X1, X2) of
(a, b) → r1

(b, a) → case (X3) of (c) → r2

(c, b) → r3

A case expression, like this, will be evaluated by reducing a tuple of arguments
to their hnf and matching them with one of the patterns of the case expression.

4 Improving Narrowing Implementations into Prolog

This section discusses two improvements in the translation of non-strict func-
tional logic programs into Prolog which are based on the analysis of definitional
trees. These translation techniques can be applied jointly or separately.

4.1 Translation Based on Refined Definitional Trees

The refined representation of definitional trees introduced in Section 3 is very
close to the standard representation of definitional trees, but it is enough to
provide further improvements in the translation of functional logic programs
into Prolog.

It is easy to adapt the translation algorithm that appears in [13] to use our
refined representation of definitional trees as input. If we apply this slightly
different algorithm to the refined definitional tree of Figure 1(b), we obtain the
following set of clauses, where the inductive positions 1 and 2 are exploited
simultaneously:

% Clause for the root node:

f(X1, X2, X3, H) :- hnf(X1, HX1), hnf(X2, HX2), f_1_2(HX1, HX2, X3, H).

% Clauses for the remaining nodes:

f_1_2(a, b, X3, H):- hnf(r1, H).

f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H).

f_1_2_b_a(c, H):- hnf(r2, H).

f_1_2(c, b, X3, H):- hnf(r3, H).

where we have cut the number of clauses with regard to the standard represen-
tation into Prolog (of the rules defining function f) presented in Section 2.2. The
number of clauses is reduced in the same proportion as the number of nodes of
the standard definitional tree for f were cut. As we are going to show in Sec-
tion 5, this refined translation technique is able to improve the efficiency of the
implementation system.

On the other hand, it is important to note that the kind of improvements
we are mainly studying in this subsection can not be obtained by an unfolding



transformation process applied to the set of clauses produced by the standard
algorithm of [13]: In fact, it is not possible to obtain the previous set of clauses
by an unfolding transformation of the set of clauses shown in Section 2.2.

4.2 Selective Unfolding Transformations

The analysis of definitional trees provides further opportunities for improving
the translation of inductively sequential programs into Prolog. For instance, we
can take notice that the definitional tree of function f in Example 1 has a
“deterministic” (sub)branch, that is, a (sub)branch whose nodes have only one
child (see Figure 1(b)). This knowledge can be used as a heuristic guide for
applying determinate unfolding transformation steps selectively.

Note that, for the example we are considering, the clauses:

f_1_2(b, a, X3, H):- hnf(X3, HX3), f_1_2_b_a(HX3, H). %% (C1)

f_1_2_b_a(c, H):- hnf(r2, H). %% (C2)

can be merged into:

f_1_2(b, a, X3, H):- hnf(X3, c), hnf(r2, H). %% (C’)

by applying a safe unfolding transformation in the style of Tamaki and Sato [21]
but restricting ourselves to determinate atoms [10] (i.e., an atom that matches
exactly one clause head in the Prolog code): we get clause C1 (the unfolded
clause) and we select the atom f 1 2 b a(HX3, H) in its body; this atom call is
unifiable with the head of clause C2 (the unique unfolding clause for this atom
call), with most general unifier σ = {HX3/c} (actually, a matcher); Therefore,
we can perform a transformation step where C1 and C2 are instantiated applying
σ, the atom call is unfolded and, afterwards, clauses C1 and C2 are replaced by
C’.

This selective unfolding is preferable to a generalized (post–compilation) un-
folding transformation process2 which may degrade the efficiency of the compiled
Prolog code. Moreover, this selective unfolding transformation can be easily inte-
grated inside the compilation procedure described in [13]. It suffices to introduce
an additional case in order to treat deterministic (sub)branches:

...
Trans(branch(π, o, T 1), p) :=

if T n = branch(πn, on, T ′)
produceCode :
fp(t1, . . . , tm, H) :-
hnf(X, π1|o), hnf(π1|o1 , π2|o1), . . ., hnf(πn−1|on−1 , πn|on−1),
hnf(πn|on

, Y), fp∪{o,o1,...,on}(t
′
1, . . . , t

′
m, H).

Trans(T ′, p ∪ {o, o1, . . . , on});

2 That is, a transformation process where non determinate atom calls are unfolded
too.



else if T n = rule(πn, πn → r)
produceCode :
fp(t1, . . . , tm, H) :-
hnf(X, π1|o), hnf(π1|o1 , π2|o1), . . ., hnf(πn−1|on−1 , πn|on−1),
hnf(r, H).

where π = f(t1, . . . , tm), π|o = X, T 1, . . . , T n is the sequence of nodes
in the deterministic (sub)branch with T i = branch(πi, oi, T i+1), and
πn[Y]on = f(t′1, . . . , t

′
m);

...
Trans(Tn, p) := Trans(T1, p), . . . , T rans(Tn, p);

Now, each function f is translated by Trans(T , ∅), where T is a definitional tree
of f .

Roughly speaking, the new case in the algorithm of [13] can be understood as
follows. If there exists a deterministic (sub)branch visit its nodes in descending
order forcing that the evaluation (to hnf) of the subterms at the inductive posi-
tion o of a term be the flat constructor at position o of the child node. Proceed
in this way until: i) a non deterministic node is reached; or ii) a leaf node is
reached and, in this case, evaluate the rhs of the rule to its hnf and stop the
translation.

The last algorithm allows some improvements we have omitted for the sake
of simplicity. First, it is possible to eliminate redundant arguments. Second, it
is possible to exploit rule nodes (i.e., an atom call like hnf(r, H)) to perform
an additional determinate unfolding step3. Having all this in consideration, the
following example illustrates the algorithm.

Example 2. Given the rules defining the partial function even and its definitional
tree:

R1 : even(0) → true,
R2 : even(s(s(X)) → even(X).

branch(even(X1), 1,
rule(even(0), R1),
branch(even(s(X2)), 1.1,

rule(even(s(s(X3)), R2))))

the Prolog code generated by the Trans algorithm is:

% Evaluation to head normal form (hnf).

hnf(even(X1), H) :- !, even(X1, H).

% Clause for the root node: it exploits the first inductive position

even(X1, H) :- hnf(X1, HX1), even_1(HX1, H).

even_1(0, true).

% Clause for the deterministic (sub)branch:

even_1(s(X2), H) :- hnf(X2, s(X3)), even(X3, H).

Note as the determinate call hnf(even(X3), H) has been unfolded (into the call
even(X3, H) using the first rule for evaluating a hnf).
3 These improvements are implemented in the curry2prolog compiler of Pakcs [8]

for the standard cases.



Therefore, our Trans algorithm, guided by the structure of a definitional tree,
is able to reproduce the effect of a post-compilation unfolding transformation
when it is applied selectively on determinate atom calls in the standard compiled
Prolog code.

5 Experiments

We have made some experiments to verify the effectiveness of our proposals. We
have instrumented the Prolog code obtained by the compilation of simple Curry
programs by using the curry2prolog compiler of Pakcs [8] (an implementation
of the multi–paradigm declarative language Curry [15]). We have introduced
our translation techniques in the remainder Prolog code. For our first transla-
tion technique, the one using the refined representation of definitional trees, the
results of the experiments are shown in Table 1. Runtime and memory occupa-
tion were measured on a Sun4 Sparc machine, running Sicstus v3.8 under SunOS
v5.7. The “Speedup” column indicates the percentage of execution time saved
by our translation technique. The values shown on that column are the percent-
age of the quantity computed by the formula (t1 − t2)/t1, where t1 and t2 are
the average runtimes, for several executions, of the proposed terms (goals) and
Prolog programs obtained when we don’t use (t1) and we use (t2) our translation
technique. The “G. stack Imp.” column reports the improvement of memory
occupation for the computation. We have measured the percentage of global
stack allocation. The amount of memory allocation measured between each ex-
ecution remains constant. Most of the benchmark programs are extracted from

Table 1. Runtime speed up and memory usage improvements for some benchmark
programs and terms.

Benchmark Term Speedup G. stack Imp.

family grandfather( , ) 19.9% 0%

geq geq(100000, 99999) 4.6% 16.2%

geq geq(99999, 100000) 4.3% 16.2%

xor xor( , ) 18.5% 0%

zip zip(L1, L2) 3.6% 5.5%

zip3 zip3(L1, L2, L2) 4.5% 10%

Average 9.2% 7.9%

[15] and the standard prelude for Curry programs with slight modifications4.
For the benchmark programs family and xor we evaluate all outcomes. The
natural numbers are implemented in Peano notation, using zero and succ as
4 For example, zip (resp. zip3) is adapted for combining two (resp. three) lists of

elements of equal length into one list of pairs (resp. triples) of the corresponding
elements. However, this function also may be useful in a practical context (see [14],
page 280).



constructors of the sort. In the zip and zip3 programs the input terms L1 and
L2 are lists of length 9.

Regarding the second translation technique, the one which implements se-
lective unfolding transformations, for the benchmark program of Example 2 we
obtain an average speedup of 11.7% and an improvement in memory usage of
14.7%.

More detailed information about the experiments and benchmark programs
can be found in http://www.inf-cr.uclm.es/www/pjulian/publications.html.

6 Discussion and Related Work

In this section we discuss some important issues and we put them in relation to
other research on functional logic programming and logic programming when it
is convenient.

Elimination of ad hoc artifices. It is noteworthy that, in some cases, the
benefits of our first translation scheme are obtained in an ad hoc way in actual
needed narrowing into Prolog implementation systems. For instance, the stan-
dard definition of the strict equality used in non–strict functional logic languages
is [11, 19]:

c == c → true
c(Xn) == c(Yn) → X1 == Y1&& . . .&&Xn == Yn

where c is a constructor of arity 0 in the first rule and arity n > 0 in the second
rule. There is one of these rules for each constructor that appears in the program
we are considering. Clearly, the strict equality has an associate definitional tree
whose pattern (X1 == X2) has two uniformly demanded positions (positions
1 and 2) and, therefore, it can be translated using our first technique, that
produces a set of Prolog clauses similar to the one obtained by the curry2prolog
compiler. Thus, the curry2prolog compiler produces an optimal representation
of the strict equality which is treated as a special system function with an ad
hoc predefined translation into Prolog, instead of using the standard translation
algorithm which is applied for the translation of user defined functions.

Failing derivations. Our first contribution, as well as the overall theory of
needed evaluation, is interesting for computations that succeed. However it is
important to say that some problems may arise when a computation does not
terminate or fails. For example, given the (partial) function {f(a, a) → a} the
standard compilation into Prolog is:

f(A,B,C) :- hnf(A,F), f_1(F,B,C).

f_1(a,A,B) :- hnf(A,E), f_1_a_2(E,B).

f_1_a_2(a,a).

while our first translation technique produces:

f(A,B,C) :- hnf(A,F), hnf(B,G), f_1(F,G,C).

f_1(a,a,a).



Now, if we want to compute the term f(b, expensive term), the standard im-
plementation detects the failure after the computation of the first argument. On
the other hand, the new implementation computes the expensive term (to hnf)
for nothing. Of course, the standard implementation has problems too —e.g. if
we compute the term f(expensive term, b), it also computes the expensive
term (to hnf)—, but it may have a better behavior on this problem. Thus, in
a sequential implementation, the performance of our first translation technique
may be in danger when subterms, at uniformly demanded positions, are evalu-
ated (to hnf) jointly with an other subterm whose evaluation (to hnf) produces
a failure. An alternative to overcome this practical disadvantage is to evaluate
these subterms in parallel, introducing monitoring techniques able to detect the
failure as soon as possible and then to stop the streams of the computation.

Clause indexing and direct implementation into Prolog. Clause index-
ing is a technique, used in the implementation of Prolog compilers, that aims to
reduce the number of clauses on which unification with a goal is performed. In
general, indexing techniques are based on the inspection of the outermost func-
tion symbol of one or more arguments in a clause head. If the predicate symbol
and the respective indexed symbols of the clause head and the goal coincide, then
the clause is selected as part of the filtered set . Afterwards, the set of clauses in
the filtered set (presumably smaller than the original one) is attempted to unify
with the goal. More sophisticated indexing techniques such as those described
in [20] perform indexing on all non variable symbols of a clause head (loosing
no significant structural information). Also, these techniques are able to obtain
the unifier during the indexing process. Although it seems to have some sim-
ilarities between indexing techniques and the standard operational mechanism
of functional logic languages, there is a big difference: in the context of pure
logic languages terms are dead structures. However, in the context of this work,
the concept of evaluation strategy relies on the existence and manipulation of
nested alive terms. The needed narrowing strategy, as defined in [6], is an ap-
plication from terms and partial definitional trees to sets of triples (position,
rule, substitution), where each triple gives the position of a term, the rule of
the program and the unifier substitution (not necessarily a most general one)
used in a narrowing step. Our work is concerned in the optimization of certain
implementation techniques of needed narrowing into Prolog.

On the other hand, a direct representation of a function into Prolog is pos-
sible, which is often more efficient, since term structures with nested functions
calls are not generated. However, a direct implementation corresponds to a call-
by-value strategy, that lacks some valuable properties (as the ability of handle
infinite data structures or a good termination behavior) [13].

Determinate unfolding. Determinate unfolding [10] has been proposed as
a way to ensure that the specialization of a logic program will never duplicate
computations. The advantages of determinate unfolding transformations, in the
context of the implementation of functional logic languages into Prolog, were
suggested in [13] and [7]. They proposed to apply determinate unfolding as a



post-compilation process but actually, in the curry2prolog compiler, determi-
nate unfolding steps are only applied to unfold the atom calls produced by rule
nodes. The novel of our proposal is that it exploits all opportunities for deter-
minate unfolding in a systematic way and it is embedded inside the compilation
process.

7 Conclusions

In this paper we have introduced a refined representation of definitional trees that
eliminates the indeterminism in the selection of definitional trees in the context
of the needed narrowing strategy (there is only one refined definitional tree for
each inductively sequential function). We have defined two translation techniques
based on the analysis of (refined) definitional trees. Although the results of the
experiments section reveal a good behavior of these translation techniques, it is
difficult to evaluate which may be their impact over the whole system, since the
improvements appear when we can detect patterns that have several uniformly
demanded positions or the existence of deterministic (sub)branches in a (refined)
definitional tree. Nevertheless, our work shows that there is a potential for the
improvement of actual (needed) narrowing implementation systems: we obtain
valuable improvements of execution time and memory allocation when our trans-
lation techniques are relevant. For the case of inductively sequential functions
without the features aforementioned, our translation schemes are conservative
and don’t produce runtime speedups or memory allocation improvements. Al-
though failing derivations are rather a problematic case where the performance of
our first translation technique may be in danger, we can deal with these problem
by introducing concurrent computations, in order to guarantee that slowdowns,
with regard to standard implementations of needed narrowing into Prolog, are
not produced. Hence, the occurrence of several inductive position in a pattern
can be considered as a signal for exploiting implicit parallelism.

On the other hand, our simple translation techniques are able to eliminate
some ad hoc artifices in actual implementations of (needed) narrowing into Pro-
log, providing a systematic and efficient translation mechanism. Moreover, the
ideas we have just developed can be introduced with a modest programming
effort in standard implementations of needed narrowing into Prolog (such as the
Pakcs [8] implementation of Curry) and in other implementations based on the
use of definitional trees (e.g., the implementation of the functional logic language
T OY[17]), since they don’t modify their basic structures.
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