
On Fuzzy Unfolding:
A Multi{adjoint Approach

Pascual Juli�an a Gin�es Moreno b Jaime Penabad c

aDepartment of Computer ScienceESI, Univ. of Castilla{La ManchaPaseo de la Universidad, 4;13071 Ciudad Real, Spain

bDepartment of Computer SciencecDepartment of MathematicsEPSA, Univ. of Castilla{La ManchaCampus Universitario, s/n;02071 Albacete, Spain
Abstract
In the context of (fuzzy) logic programs, `unfolding' means to transform a programrule by replacing an atom call of the body (of that rule) by its de�nition. Unfoldingis a semantics{preserving program transformation technique that is able to improveprograms, generating more e�cient code, since it anticipates computation steps.Unfolding is the basis for developing sophisticated and powerful programming tools,such as fold/unfold transformation systems or partial evaluators. In this paper weaddress the problem of extending the classical de�nition of the unfolding rule (forpure logic programs) to the setting of multi{adjoint logic programming, where afuzzy computed answer is a pair htruth degree; substitutioni computed by a fuzzygeneralization of the modus ponens inference rule. Our main contributions can besummarized as follows:
� We proved the independence of the computation rule for multi{adjoint admissiblecomputations.
� Moreover, we de�ned a fuzzy unfolding rule and we demonstrated its strong cor-rectness properties, that is, original and unfolded programs compute the samefuzzy computed answers for a given goal.
� We also proved that unfolding transformations increase the e�ciency of the resid-ual programs, by reducing the length of fuzzy admissible derivations when solvinggoals.

Key words: Fuzzy inference systems, fuzzy logic programming, unfolding

? This work has been partially supported by the EU (FEDER) and the SpanishMEC, under grant TIN2004{07943{C04{03.Email addresses: Pascual.Julian@uclm.es (Pascual Juli�an),Gines.Moreno@uclm.es (Gin�es Moreno),Jaime.Penabad@uclm.es (Jaime Penabad).

Preprint submitted to Elsevier Science 5 April 2005

1 Introduction

Fuzzy Logic Programming amalgamates fuzzy logic [1] and pure logic program-
ming [2], in order to provide these traditional languages with techniques or
constructs to deal with uncertainty and approximated reasoning. There is no
common method for introducing fuzzy concepts into logic programming. We
have found two major, and rather di�erent, approaches:
� The �rst approach, represented by languages as LIKELOG [3], replaces the

syntactic uni�cation mechanism of classical SLD{resolution by a fuzzy uni-
�cation algorithm, based on similarity relations (over constants and predi-
cates). The fuzzy uni�cation algorithm provides an extended most general
uni�er as well as a numerical value, called uni�cation degree. Intuitively, the
uni�cation degree represents the truth degree associated with the (query)
computed instance. Programs written in this kind of languages consist, in
essence, in a set of ordinary (Prolog) clauses jointly with a set of \similarity
equations" which play an important role during the uni�cation process.
� For the second approach, programs are fuzzy subsets of (clausal) formulas,

where the truth degree of each clause is explicitly annotated. The work
of computing and propagating truth degrees relies on an extension of the
resolution principle, whereas the (syntactic) uni�cation mechanism remains
untouched. An example of this kind of languages is the one described in [4].

We are mainly interested in the second class of fuzzy logic languages. Recently,
it has been appeared in [5] a theoretical model for fuzzy logic programming
which deals with many valued implications. This line of work has concluded
with the introduction of a multi{adjoint logic programming framework[6{8].
This framework allows the use of multiple implications and rather general con-
nectives in the rules of a program. Finally, in [9] we �nd an extremely
exible
scheme where, apart from introducing negation and dealing with interval{
valued fuzzy sets [1], each clause on a given program may be interpreted with
a di�erent logic.
Program transformation is an optimization technique for computer programs
that starting with an initial program P0 derives a sequence P1; : : : ;Pn of
transformed programs by applying elementary transformation rules. The aim
is that the �nal program Pn have the same meaning as P0, but with a more
e�cient behaviour with regard to some criterion. Program transformation can
be seen as a methodology for software development, hence its importance.
Among the elementary transformation rules the so called unfolding rule has
been widely studied. In essence, an unfolding rule is a program transformation
operation which replaces a program rule by the set of rules obtained after appli-

2

cation of a symbolic computation step (in all its possible forms) on the body of
the selected rule [10]. Depending on the concrete paradigm taken into account
(functional [11], logic [12] or integrated functional{logic [13]) the considered
computation step will be performed using |some variant of| its associated
operational mechanism (rewriting, resolution or narrowing, respectively). The
unfolding rule is able to produce, by itself (i.e., without being combined with
any other kind of transformation), important optimizations on the original
program code. Beyond this initial bene�t, di�erent unfolding formulations
have shown their usefulness in the construction of advanced techniques for
program synthesis, program analysis, debugging, compiling, learning, and so
on. But, perhaps, the �elds where unfolding has exhibited its best proper-
ties and powerful capabilities were partial evaluation and fold/unfold{based
program transformation [14].
Although one of the main goals of a transformation technique is to obtain a
better behaviour of the transformed program with respect to some e�ciency
criterion (for instance, execution time), from the theoretical point of view,
the main goal is to achieve the semantic correctness of the transformation. A
proper formulation of the unfolding rule must guarantee that it is meaning
preserving (i.e., the unfolded program must reproduce as closely as possible
the \observable" e�ects of the original program). For this purpose, several
\applicability" conditions must be identi�ed without drastically reducing the
class of programs where the transformation could be performed in a safe way.
Language syntax and operational semantics play an important role in the
identi�cation of such requirements, as we will see in our extension of the
unfolding transformation (for pure logic programs) to a fuzzy context.
In this paper we have selected the framework of multi{adjoint logic program-
ming [6{8] for the formalization of the unfolding transformation, since this is a
extremely general framework where the unfolding transformation rule can be
de�ned in a natural way. In this language, a fuzzy computed answer is a pair
htruth degree; substitutioni computed by a fuzzy generalization of the modus
ponens inference rule. We have proved a result which is the fuzzy counterpart
of the independence of the computation rule theorem of [2] for multi{adjoint
logic programs.
We have de�ned a fuzzy unfolding rule for multi{adjoint logic programs and,
we have studied its correctness properties together with the theoretical gains
in e�ciency produced on the residual code. The major technical result consists
in proving the strong soundness and completeness for the new unfolding rule,
namely that the fuzzy answers computed by fuzzy admissible computations in
the initial and the �nal program coincide, whereas the last one runs faster.
The outline of this paper is as follows. In the next section and Section 3, we
recall the most important features of multi{adjoint logic programming and we

3

present the operational semantics of the language. In Section 4, the indepen-
dence of the computation rule is formalized. In Section 5, we de�ne the fuzzy
unfolding rule, whereas in Section 6 we prove its main theoretical/practical
properties. Finally, we show our conclusions in Section 7.

2 Fuzzy Logic Programs and Declarative Semantics

In [15], among the variety of fuzzy logic programming languages in the lit-
erature, we selected the one described in [4] for �rst de�ning the concept of
unfolding of fuzzy logic programs; since we considered it was specially well{
suited for this purpose, mainly due to its simple (but powerful) syntax and
operational semantics. However, starting with [5], a line of research works
generalizes fuzzy logic languages of this class by allowing simultaneous use of
several implications in the rules and more general connectives in their bodies.
Therefore, it is important to analyse and adapt those previous concepts on
fuzzy unfolding for the new languages. In this section we summarize the main
features of the multi{adjoint logic programing framework presented in [6{8] 1 .
Let L be a �rst order language containing variables, function symbols, predi-
cate symbols, constants, quanti�ers, 8 and 9, and several (arbitrary) connec-
tives to capture di�erent interdependencies between predicates:
^1; ^2; : : : ; ^k (conjunctions)
_1; _2; : : : ; _l (disjunctions)

 1; 2; : : : ; m (implications)
@1; @2; : : : ; @n (aggregations)

The implication i is the left-arrow version of !i. Although the connectives
^i, _i and @i are binary operators, we usually generalize them as functions
with an arbitrary number of arguments. So, we write 2 , @i(x1; : : : ; xn) instead
of @i(x1;@i(x2; : : : ;@i(xn�1; xn) : : :)).
Multi{adjoint logic programing is interested in a subset of formulas of the �rst
order language L described above. A rule is a formula A B, where A is an
atomic formula (usually called the head) and B is a formula built from atomic
formulas B1; : : : ; Bn | n � 0 | and conjunctors, disjunctors and aggregators
(which is called the body). Rules with an empty body are called facts. A goal
is a body submitted as a query to the system. Variables in a rule are assumed
governed by universal quanti�ers.
1 See these works for a more formal introduction.2 Since \we have several connectives one cannot expect associativity and commu-tativity between them and hence parentheses should be used" [5]. Therefore, thisway of writing must be seen as a notational convention that we use for conveniencereasons.

4

Formulas are interpreted on a multi{adjoint lattice. To make this paper self{
contained we reproduce the concepts of adjoint pair and multi{adjoint lattice
from [6] and [7], which are grouped in the following de�nition:
De�nition 1 Let hL;�i be a complete lattice. A multi{adjoint lattice is a
tuple hL;�; 1;&1; : : : ; n;&ni satisfying the following conditions:
(1) hL;�i is bounded (i.e., it has a bottom, ?, and top, >, elements);
(2) > &i v = v &i > = v for all v 2 L and i = 1; : : : ; n;
(3) Each (i;&i), with i = 1; : : : ; n, is and adjoint pair, that is:

(a) Operation &i is increasing in both arguments;
(b) Operation i is increasing in the �rst argument and decreasing in

the second argument;
(c) Adjoint property: for any x; y; z 2 L, we have that x � (y iz) holds

i� (x&iz) � y holds.
In order to be concrete, when representing truth values in the examples, we
shall select L as the set of real numbers in the interval [0; 1]. But in general,
L does not need to be a totally ordered set, it is useful any set equipped with
a partial order and organized as complete bounded lattice. It is noteworthy
that, &i is not part of the object language L, although it must be part of an
extended language introduced in order to de�ne the operational mechanism
of multi{adjoint logic languages (see latter, in Section 3).
In the context of multi{adjoint logic programming it is possible to concentrate
on Hebrand interpretations, disregarding general interpretations, in order to
de�ne a declarative semantics [8]. Therefore, a fuzzy interpretation, I, is a
mapping from the Herbrand base, BL, into the multi{adjoint lattice of truth
values L. The truth value of a ground atom A 2 BL is I(A). As usual, for
a speci�c assignment # from terms into elements of the Herbrand universe
UL, the valuation of a formula in an interpretation is obtained by structural
induction on the complexity of that formula:

I(p(t1; : : : ; tn))[#] = I(p(t1#; : : : ; tn#));
I(c(A1; : : : ; An))[#] = [[c]](I(A1)[#]; : : : ; I(An)[#]);

I(A B)[#] = I(A)[#][[]]I(B)[#];
I((8x)A)[#] = inffI(A)[#0] j #0 x{equivalent to #g;

where p is a predicate symbol, c an arbitrary connective, A and Ai atomic
formulas, B any body, A any formula and we denote the meaning function
(truth value function) for a connective c by [[c]]. When the assignment would
not be relevant, we shall omit it during the valuation of a formula.

5

We describe real problems with uncertain knowledge by means of fuzzy theo-
ries that constitute fuzzy logic programs.
De�nition 2 A fuzzy theory is a partial mapping T applying formulas into
elements (truth values) of a lattice L.
A multi{adjoint program, P, is a fuzzy theory such that the domain dom(P)
is a �nite set of rules and L is a multi{adjoint lattice equipped with several
implications.
Informally speaking, a multi{adjoint logic program can be seen as a set of
pairs hR;�i, where R is a rule and � = P(R) is a truth degree expressing
the con�dence which the user of the system has in the truth of the rule R.
Often, we'll write \R with � = P(R)" instead of hC;P(R)i. Truth degrees
are axiomatically assigned (for instance) by an expert.
An interpretation I is a model of a fuzzy theory if for any rule R 2 dom(P),
I(R) � P(R).
In [8], the declarative semantics of a multi{adjoint logic program is given in
terms of a least fuzzy Herbrand model. Also, its characterization by a �x point
semantics is presented.

3 Operational Semantics and Extended Fuzzy Logic Language

In this section, we formalize the concepts of fuzzy admissible computation step,
fuzzy admissible derivation and fuzzy computer answer, with slight variations
with regard to the de�nitions that appear in [8].
In order to formalize the following de�nitions we need an extended language
obtained by adding to the alphabet of the object language L: i) elements of the
lattice (truth values) and ii) an adjoint conjunction &i for each implication ithat appears in the multi{adjoint logic program. We will denote the extended
language by Le, and formulas in Le will be named Le{formulas. Informally, a
Le{ program is a set of pairs hLe{rule, truth valuei.
The operational mechanism that we are going to de�ne is a backwards rea-
soning procedure that, using a generalization of modus ponens, provides a
lower bound of the truth value of a goal under any model of a program. More
precisely, starting from an extended goal and applying modus ponens on a
selected atom A of the goal and a rule hA0 iB; vi of the program, if there is
a substitution � = mgu(fA = A0g) 3 , we substitute the atom A by the ex-
3 Let mgu(E) denote the most general uni�er of an equation set E (see [16] for a

6

tended expression (v&iB)�. The process is repeated until an extended formula
with no atoms is obtained. Then the truth degree of the extended formula
can be obtained by interpretation. The adjoint property of the pair (i;&i)warranties that the truth degree is a lower bound. Therefore, in this context,
a computation can be seen as a two phase procedure with a �rst operational
and a latter interpretive phase. Note that in other previous works [4,5] both
phases were mixed.
In the formalization of the fuzzy admissible computation, we write C[A], or
more generally C[A1; : : : ; An], to denote a Le{formula where A, or A1; : : : ; Anrespectively, are sub-expressions (usually atoms) which arbitrarily occur in
the |possibly empty| context C[]. Moreover, expression C[A=A0] (and its
obvious generalization) means the replacement of A by A0 in the context C[].
De�nition 3 Let Q be a Le{goal and let � be a substitution, a state is a pair
hQ;�i. Let E be the set of states. Given a Le{program P, we de�ne a Fuzzy
Admissible Computation as a state transition system, whose transition rela-
tion !AS � (E �E) is the smallest relation satisfying the following admissible
rules:
Rule 1.

hQ[A];�i!ASh(Q[A=v&iB])�;��i if

8>>>>>><
>>>>>>:

(1) A is the selected atom in Q,
(2) � = mgu(fA0 = Ag),
(3) hA0 iB; vi in P and B is

not empty.
Rule 2.

hQ[A];�i!ASh(Q[A=v])�;��i if

8>>>>><
>>>>>:

(1) A is the selected atom in Q,
(2) � = mgu(fA0 = Ag), and
(3) hA0 ; vi in P.

Rule 3.

hQ[A];�i!ASh(Q[A=?]);�i if
8>>><
>>>:

(1) A is the selected atom in Q, and
(2) there is no rule in P whose

head uni�es with A.
All familiar logic programming concepts (such as derivation, etc.) can be ex-
tended for the fuzzy case, assuming also that formulas involved in fuzzy ad-
missible computation steps are renamed before being used. Note that, Rule 3 is
formal de�nition of this concept).

7

introduced to cope with (possible) unsuccessful admissible derivations. In the
following, symbols!AS1,!AS2 and!AS3 may be used for explicitly referring
to the application of each one of the admissible rules. When needed, the exact
rule used in the corresponding step will be annotated as a super{index of the
!AS symbol. Also we shall use !ASn to denote a sequence of n admissible
computation steps and !AS� for an arbitrary sequence of steps.
De�nition 4 Let P be a Le{program and Q be a Le{goal. A sequence E0 !ASE1 !AS� En is a successful admissible derivation if:
(1) E0 = hQ; idi, where id is the empty substitution;
(2) for each 0 � i < n, Ei !AS Ei+1 is an admissible derivation step;
(3) En = hQ0; �0i and Q0 is a Le{formula that does not contain atoms.
Note that, if after a sequence of admissible steps a Le{goal becomes a Le{
formula that does not contain atoms, then it can be interpreted directly in
the multi{adjoint lattice L. This justi�es the following extension of the notion
of computed answer to our fuzzy setting. In this de�nition we use Var(s) to
refer to the set of distinct variables occurring in the syntactic object s, and
�[Var(s)] denotes the substitution obtained from � by restricting its domain,
Dom(�), to Var(s).
De�nition 5 Let P be a Le{program and Q be a Le{goal. Given a success-
ful admissible derivation hQ; idi!AS�h@(r1; : : : ; rn); �i, with ri 2 L for any
i 2 f1; : : : ; ng, the pair h[[@]](r1; : : : ; rn);�i, where � = �[Var(Q)], is a fuzzy
computed answer (f.c.a.) for that derivation.
We illustrate the previous concepts and the last de�nition by means of an
example.
Example 6 Let P be the following L{program,

R1 : p(X) prod q(X; Y) ^G r(Y) with � = 0:8
R2 : q(a; Y) prod s(Y) with � = 0:7
R3 : q(Y; a) luka r(Y) with � = 0:8
R4 : r(Y) with � = 0:7
R5 : s(b) with � = 0:9

The labels prod, G and luka mean for product logic, G�odel intuitionistic logic
and Lukasiewicz logic respectively. That is, [[&prod]](x; y) = x � y, [[^G]](x; y) =
min(x; y), and [[&luka]](x; y) = max(0; x + y � 1).
In the following successful admissible derivation for the program P and the
goal p(X) ^G r(a), we underline the selected expression in each admissible
step:

8

hp(X) ^G r(a); idi!AS1R1 h(0:8&prod(q(X1; Y1) ^G r(Y1))) ^G r(a);�1i
!AS1R2 h(0:8&prod((0:7&prods(Y2)) ^G r(Y2))) ^G r(a);�2i
!AS2R5 h(0:8&prod((0:7&prod0:9) ^G r(b))) ^G r(a);�3i
!AS2R4 h(0:8&prod((0:7&prod0:9) ^G 0:7)) ^G r(a);�4i
!AS2R4 h(0:8&prod((0:7&prod0:9) ^G 0:7)) ^G 0:7;�5i

where �1 = fX=X1g, �2 = fX=a;X1=a; Y1=Y2g, �3 = fX=a;X1=a; Y1=b;Y2=bg, �4 = fX=a;X1=a; Y1=b; Y2=b; Y3=bg and �5 = fX=a;X1=a; Y1=b; Y2=b;Y3=b; Y4=ag.
Then the f.c.a for this admissible derivation is h0:504; fX=agi, since:

I((0:8&prod((0:7&prod0:9) ^G 0:7)) ^G 0:7) = � � �
= (0:8[[&prod]]((0:7[[&prod]]0:9)[[^G]]0:7))[[^G]]0:7 = � � � = 0:504[[^G]]0:7 = 0:504
and �5[Var(Q)] = fX=ag.
In an adjoint pair, the intended meaning for i is an implication, coupled
joinly with a conjunction operator &i evaluating modus ponens in such a way
that it is a sound inference rule:

h(A iB); xi
hB; yi
hA;&i(x; y)i

That is, if an interpretation I is a model of A iB (i.e., I(A iB) � x) and
B (i.e., I(B) � y) then I is a model of A (i.e., I(A) � x&iy). The soundness
of the operational mechanism can be stated as follows: x � I(A iB) =
I(A)[[i]]I(B) � I(A)[[i]]y, since \ i" is decreasing in its second argument
and I(B) � y; then, by the adjoint property, I(A) � x&iy.
In [8], the authors established an approximative completeness result for the op-
erational mechanism of multi{adjoint logic programming. However, the com-
pleteness result can be achieve by restricting the properties of connectives
[5].
As for the classical SLD{Resolution calculus, we assume the existence of a
�xed selection function, also called fuzzy computation rule, deciding, for a
given goal, which is the selected expression to be exploited in the next fuzzy
admissible step. For instance, when building the admissible derivation shown
in Example 6, we have used a computation rule similar to the left to right

9

selection rule of Prolog. Given a fuzzy computation rule S, we say that a fuzzy
admissible derivation is via S if the selected expression in every admissible
step is obtained by the application of the mapping S to the corresponding
goal in that step. In the following section, we establish in our fuzzy setting
the independence of the computation rule proved in [2] for the pure logic
programming case.

4 Independence of the Fuzzy Computation Rule

Before starting with the core of the paper, we introduce some technical nota-
tions and concepts that will help us to develop our proofs. In the following, we
use R << P to denote an standardised apart new variant 4 of a program rule
such that R contains no variable which was previously met during a computa-
tion. The equational representation of a substitution � = fx1=t1; : : : ; xn=tng is
the set of equations b� = fx1 = t1; : : : ; xn = tng. Parallel composition of sub-
stitutions [17] corresponds to the notion of uni�cation generalized to substitu-
tions. Given two idempotent substitutions �1 and �2, the parallel composition
�1 * �2 = mgu(c�1 [c�2). The following property will be useful later.
Proposition 7 [17] Let �1 and �2 be idempotent substitutions. Then,

�1 * �2 = �1mgu(c�2�1) = �2mgu(c�1�2):
In order to prove the independence of the fuzzy computation rule, we need
the following auxiliary Lemmas. The �rst one focuses on the preservation of
substitutions in f.c.a.'s obtained by the application of two admissible steps
done with the �rst and/or the second rules of De�nition 3, with independence
of the order in which atoms are exploited.
Lemma 8 Let P be a Le{program and let Q0[A;A0] be a Le{goal. If in the
following derivations we only consider steps of kinds !AS1 and !AS2, then,hQ0; �0i!ASAhQ1; �0�1i!ASA0�1hQ2; �0�1�2i i�hQ0; �0i!ASA0hQ01; �0�01i!ASA�0

1hQ02; �0�01�02i, where �0�1�2 = �0�01�02.
PROOF. ()) Let atoms H1 and H2 be the heads of rules R1;R2 << P
used to exploit (instances of) atoms A and A0, respectively, in the considered
derivation: hQ0; �0i!ASAhQ1; �0�1i!ASA0�1hQ2; �0�1�2i, where we have that
�1 = mgu(fA = H1g) and �2 = mgu(fA0�1 = H2g). Moreover, since we don't
consider steps of kind !AS3, then �0�1�2 6= fail, and in particular �2 6= fail,
which also implies that �01 = mgu(fA0 = H2g) 6= fail. Now, the following
equalities hold:
4 Formally, we say that two expressions E1 and E2 are variants one of each otherif and only if there are some renaming substitutions � and �0 such that E1 = E2�and E2 = E1�0.

10

�1�2 =
�1mgu(fA0�1 = H2g) = (since Dom(�1) \ Var(R2) = ;)
�1mgu(dmgu(fA0 = H2g)�1) =
�1mgu(c�01�1) = (by Proposition 7)
�1 * �01 = (by Proposition 7)
�01mgu(c�1�01) =
�01mgu(dmgu(fA = H1g)�01) = (since Dom(�01) \ Var(R1) = ;)
�01mgu(fA�01 = H1g)

Moreover, since �1�2 6= fail then �01mgu(fA�01 = H1g) 6= fail and, in partic-
ular, �02 = mgu(fA�01 = H1g) 6= fail. Hence, �1�2 = �01�02 which implies that
�0�1�2 = �0�01�02, as we wanted to prove.
(() This case can be easily proved in a similar way as the previous one, by
also exploiting the equivalence between �1�2 and �01�02.

The following Lemma generalizes Lemma 8 at two di�erent levels:
� �rst, preserving both elements in derivation states, i.e., not only substitu-

tion, but also partially evaluated truth degrees; and
� second, using the whole set of admissible rules of De�nition 3 (instead of the

�rst pair only) when applying the two admissible steps on the considered
derivations.

Lemma 9 (Switching Lemma) Let P be a Le{program and let
Q0[A;A0] be a Le{goal. Then, hQ0; �0i!ASAhQ1; �1i!ASA0�1hQ2; �2i i�
hQ0; �0i!ASA0hQ01; �01i!ASA�0

1hQ02; �02i, where Q2 = Q02 and �2 = �02.

PROOF.
For readability reasons, we underline the selected atoms exploited in each
derivation step. In our proof we exhaustively proceed with each one of all the
possible cases. Fortunately, note that the case where the �rst step is done
with rule i and the second one with rule j is perfectly analogous to the case
where the �rst step is done with rule j and the second one with rule i, which
drastically reduces the number of alternatives.
(1) First step with Rule 1 and second step with Rule 1.

Assume that R1 : hH1 1 B1; v1i << P and R2 : hH2 2 B2; v2i << P .
Then,

11

hQ0[A;A0]; �0i !AS1R1

hQ0[A=(v1&1B1); A0]�1; �1i !AS1R2

hQ0[A=(v1&1B1); A0=(v2&2B2)]�2; �2i
i�

hQ0[A;A0]; �0i !AS1R2

hQ0[A;A0=(v2&2B2)]�01; �01i !AS1R1

hQ0[A=(v1&1B1); A0=(v2&2B2)]�02; �02i
By Lemma 8, �2 = �02, which also implies that the �rst element of the
�nal states in both derivations are syntactically identical, as we wanted
to prove.

(2) First step with Rule 1 and second step with Rule 2.
Now we assume thatR1 : hH1 1 B1; v1i << P andR2 : hH2 ; v2i << P .
The reader may easily check that this case is perfectly analogous to the
previous one, but now, instead of using!AS1R2 we need!AS2R2 , whereas
expression A0=(v2&2B2) can be directly simpli�ed to A0=v2.

(3) First step with Rule 1 and second step with Rule 3.
In this case we assume that atom A uni�es with the head of a program
rule R1 : hH1 1 B1; v1i << P , whereas there is no rule in the program
whose head unify with (any instance of) atom A0. It is important to note
that, in contrast with the previous cases, only one uni�er (instead of two
ones) is computed in the considered derivations. Then,

hQ0[A;A0]; �0i !AS1R1

hQ0[A=(v1&1B1); A0]�1; �1i !AS3
hQ0[A=(v1&1B1); A0=?]�1; �1i

i�
hQ0[A;A0]; �0i !AS3
hQ0[A;A0=?]; �0i !AS1R1

hQ0[A=(v1&1B1); A0=?]�1; �1i
as we wanted to prove.

(4) First step with Rule 2 and second step with Rule 2.
This case is perfectly analogous to the �rst one, but now all the admis-
sible steps are of type !AS2 instead of !AS1, and all the occurrences of

12

expressions A=(v1&1B1) and A0=(v2&2B2) in the considered goals, can be
directly simpli�ed to A=v1 and A0=v2, respectively.

(5) First step with Rule 2 and second step with Rule 3.
We omit the proof of this case once again, since it can be easily obtained
by exploiting the similarities between the present situation and the third
one.

(6) First step with Rule 3 and second step with Rule 3.
In our �nal proof, we don't need to compute uni�ers (which strongly con-
trast with any other case), thus obtaining: hQ0[A;A0]; �0i!AS3hQ0[A=?; A0]; �0i!AS3hQ0[A=?; A0=?]; �0i i� hQ0[A;A0]; �0i!AS3hQ0[A;A0=?]; �0i!AS3hQ0[A=?; A0=?]; �0i, as we wanted to prove.

Now, we can formalize and prove the main result of this section.
Theorem 10 (Independence of the Fuzzy Computation Rule) Let P be
a Le{program and let Q be a Le{goal. For any pair of fuzzy computation
rules S and S 0, we have that: hQ; idi!ASkSh@(r1; : : : ; rn); �i i�
hQ; idi!ASkS0h@(r1; : : : ; rn); �i where ri 2 L for any i 2 f1; : : : ; ng and k
is the (same) number of fuzzy admissible steps in both derivations.
PROOF. Immediate by repeatedly applying the Switching Lemma 9.

5 Fuzzy Unfolding of Extended Programs

As we have seen in the previous sections, the di�erences between L{programs
and Le{programs appear only at the syntactic level: the bodies of Le{rules
(which intuitively have the same structure of any initial, intermediate or �nal
goal appearing in fuzzy admissible derivations) are similar to the bodies of L{
rules (in essence, simple original goals) but possibly including elements of the
lattice (truth values) and adjoint conjunctions of the form &i. This implies that
any L{program is also an Le{program, although the contrary is not always
true (i.e., the set of L{programs is a proper subclass of the set of Le{programs).
Apart from this simple fact (which, on the other hand, is mandatory to de�ne
the notion of fuzzy admissible computation) both languages share all kind
of semantics, like obviously the operational one, but also the declarative and
the least �x{point ones and their correctness/ completeness properties, as
described in [8].
On the other hand, as we know, the unfolding rule consists in essence in the
application of a symbolic computation step on (the selected atom of) the body

13

of a rule which, in our fuzzy setting, corresponds to the application of any of
the three rules described in De�nition 3. Observe that this process always
generates rules whose bodies include truth degrees and possibly adjoint con-
junctions. Hence, an unfolding transformation based on fuzzy admissible com-
putations is able to preserve the syntactic structure of Le{programs but, even
in the case that original programs be also L{programs, the transformed ones
will never belong to this subclass: the truth degrees and adjoint conjunctions
incorporated on the body of transformed rules by unfolding steps force the lost
of the original L{program syntax. In order to avoid this inconvenience, our
following de�nition focuses in the general framework of Le{programs instead
of the more restricted subclass of L{programs.
De�nition 11 Let P be an Le{program and R : (A B with � = v) 2 P
a (non unit) Le{program rule. Then, the fuzzy unfolding of program P with
respect to rule R is the new Le{program P 0 = (P � fRg) [U such that:

U = fA� B0 with � = v j hB; idi!AShB0;�ig
There are some remarks to do regarding our de�nition. Similarly to the clas-
sical SLD{resolution based unfolding rule presented in [12], the substitutions
computed by admissible steps during unfolding are incorporated to the trans-
formed rules in a natural way, i.e., by applying them to the head of the rule.
On the other hand, regarding the propagation of truth degrees, we solve this
problem in a very easy way: the unfolded rule directly inherits the truth degree
� of the original rule.
However, a deeper analysis of the unfolding transformation reveals us that the
body of the transformed rule also contains 'compiled{in' information on both
components of a fuzzy computed answer (i.e., truth degree and substitution).
Regarding truth degrees, we observe that the body of the transformed rule
may include: i) the symbol ?, provided a !AS3 admissible step is performed;
ii) a truth degree, coming from the second rule involved in the unfolding step,
when the admissible step is done with !AS2; or iii) a truth degree together
with the adjoint conjunction associated to the second rule involved in the
unfolding step, if the admissible step is based on !AS1. Summarizing, the
propagation of truth degrees during unfolding is done at two di�erent levels:
(1) by directly assigning the truth degree of the original rule as the truth

degree of the transformed one, and
(2) by introducing new truth degrees (of other rules or alternatively ?) and

possibly adjoint conjunctions in its body.
Those manipulations in the body of the rule will drastically a�ect the compu-
tation/propagation of truth degrees when solving goals against transformed
programs. Let us now illustrate all these facts with an example.
Example 12 Consider again program P shown in Example 6. It is easy to see

14

that the unfolding of program P w.r.t. rule R2 (exploiting the second admissible
rule of De�nition 3) generates the new program P 0 = (P � fR2g) [fR25g,where R25 is the new unfolded rule q(a; b) prod0:9 with � = 0:7. On the other
hand, if we want to unfold now rule R1 in program P 0, we must �rstly build
the following one{step admissible derivations 5 :

hq(X; Y) ^G r(Y); idi !AS1R25 h(0:7&prod0:9) ^G r(b); fX=a; Y=bgi
hq(X; Y) ^G r(Y); idi !AS1R3 h(0:8&lukar(Y1)) ^G r(a); fX=Y1; Y=agi

So, the unfolded program P 00 = (P 0 � fR1g) [fR125;R13g, where:
R125 : p(a) prod(0:7&prod0:9) ^G r(b) with � = 0:8
R13 : p(Y1) prod(0:8&lukar(Y1)) ^G r(a) with � = 0:8

Moreover, by performing a new admissible step with the second rule of De�ni-
tion 3 on the body of rule R125, we obtain the new unfolded rule
p(a) prod(0:7&prod0:9) ^G 0:7 with � = 0:8. It is important to note that the
application of this last rule to the goal proposed in Example 6 simulates the
e�ects of the �rst four admissible steps shown in the derivation of the same
example, which evidences the improvements achieved by unfolding on trans-
formed programs.
The most important and practical purpose of the unfolding transformation,
apart from preserving the program semantics, is to optimize code, indepen-
dently of the object language. Classical fold/unfold based transformation sys-
tems optimize programs by returning code which uses the same source lan-
guage, but unfolding has also played important roles in the design of compilers
(see [18]) that generate an object code written in a target language. In this
sense, our unfolding transformation can be seen as a mixed technique that
optimizes L{programs and compiles it into Le{programs, with the advantage
in our case that both programs are executable with exactly the same opera-
tional principle, apart from sharing any other kind of semantics and related
properties.
The following section is devoted to establish the best properties one can expect
of a transformation like our fuzzy unfolding, namely:
� on the theoretical side, the exact and total correspondence between fuzzy

computed answers for goals executed against the original and the trans-
formed programs, and
� on the practical side, the gains in e�ciency of unfolded programs that is

possible to obtain by reducing the number of fuzzy admissible steps needed
to solve a goal.

5 Note that unfolding steps are always performed using a �xed computation rule.In this and the other examples we are using a left-to-right Prolog like computationrule.

15

6 Properties of Fuzzy Unfolding
We start this section by proving the following Lemma, which can be seen as
the counterpart of Lemma 8 (preservation of substitutions in f.c.a.'s on inter-
changeable derivation steps). Intuitively it shows that, even in the case that
two admissible steps can not be switched, since the second step exploits an
atom introduced on the considered goal by the �rst one, their e�ect (w.r.t.
fuzzy computed answer substitutions) can be simulated by a single step per-
formed using a transformed rule obtained by fuzzy unfolding.
Lemma 13 Let P be a Le{program, Q0 a Le{goal and R1;R2 << P. Then,hQ0; �0i!AS1R1hQ1; �0�1i!ASR2hQ2; �0�1�2i, where the second step is of kind
!AS1 or !AS2 and exploits an atom introduced in Q1 after the �rst step, i�
hQ0; �0i!AS1R3hQ3; �0�3i, where R3 is obtained by fuzzy unfolding of R1 usingR2, such that �0�1�2 = �0�3 [Var(Q0)].

PROOF.
()) Let R1 : hH1 1B1[A1]; v1i, let H2 be the atom at the head of rule R2 and
assume that A is the atom selected in Q0 by the considered computation rule.
Then, in the admissible derivation hQ0;�0i!AS1R1hQ1;�0�1i!ASR2hQ2;�0�1�2iwe have that: �1 = mgu(fA = H1g) and Q1 = Q0[A=(v1&1B1[A1])]�1. More-
over, if A1�1 is the atom selected in Q1 by the considered computation rule,
we have that �2 = mgu(fA1�1 = H2g). Now, consider � = mgu(fA1 = H2g).Then, the following equalities hold:

�1�2 =
�1mgu(fA1�1 = H2g) = (since Dom(�1) \ Var(R2) = ;)
�1mgu(dmgu(fA1 = H2g)�1) =
�1mgu(b��1) = (by Proposition 7)
�1 * � = (by Proposition 7)
�mgu(c�1�) =
�mgu(dmgu(fA = H1g)�) = (since Dom(�) \ Var(Q0) = ;)
�mgu(fA = H1�g)

Moreover, since �1�2 6= fail, then � 6= fail and thus there exists a rule
R3 obtained by unfolding (atom A1 in the body of) R1 by using R2, such
that the head of R3 is the atom H1�. Now, since mgu(fA = H1�g) 6= fail,
the following admissible step done on the selected atom A in Q0 can be
proved: hQ0; �0i!AS1R3hQ3; �0�3i, where �3 = mgu(fA = H1�g). Finally,
since �1�2 = ��3, then �0�1�2 = �0��3, and since Dom(�) \ Var(Q0) = ;

16

and Dom(�) \ Dom(�0) = ;, we have that �0�1�2 = �0�3 [Var(Q0)], as we
wanted to prove.

(() This case can be easily proved in a similar way as the previous one, by
also exploiting the equivalence between �1�2 and ��3.

Now, we are able to prove the strong soundness of the transformation.
Theorem 14 (Strong Soundness) Let P be a Le{program and let Q be
a Le{goal. If P 0 is a Le{program obtained by fuzzy unfolding of P, then,
hQ; idi!AS�h@(r1; : : : ; rn); �i in P, if hQ; idi!AS�h@(r1; : : : ; rn); �0i in P 0,
where ri 2 L for any i 2 f1; : : : ; ng and � = �0[Var(Q)].
PROOF. Let D0 : [hQ; idi!AS�h@(r1; : : : ; rn); �i] be the (generic) admissible
derivation for Q in P 0 that we plan to simulate by constructing a new deriva-
tion D for Q in P . The construction of D is done by induction on the length
of D0, k. Since the base case, i.e. k = 0, is trivial, we proceed with the general
case when k > 0. Then, D0 : [hQ; idi!AShQ0;#i!AS�h@(r1; : : : ; rn); �0i]. If the
�rst step of D0 has been given with the second or the third rule of De�nition
3, or, even it is has been performed with the �rst one but using a rule also
belonging to P , then the claim follows by the inductive hypothesis. Otherwise,
this initial step is done with !AS1 using a rule R0 that has been obtained by
unfolding other rule R 2 P . Since the unfolding step has been performed with
one of the three rules of De�nition 3, we treat each case separately.
(1) Unfolding based on Rule 1.

Let R : hH1 1 B1[A1]; v1i 2 P and R2 : hH2 2 B2; v2i 2 P such that,
by unfolding R w.r.t. R2 using the �rst rule in De�nition 3, we obtain:
R0 : h(H1 1 B1[A1=(v2&2B2)])�; v1i 2 P 0. If we assume that A is the
selected atom in Q when building derivation D0, then hQ[A]; idi!AS1R0

h(Q[A=(v1&1B1[A1=(v2&2B2)])])�
;�
i!AS�h@(r1; : : : ; rn); �0i. Now, the
�rst step of D0 can be simulated in derivation D by using rules R and
R2 of P as follows: hQ[A]; idi!AS1Rh(Q[A=(v1&1B1[A1])])�;�i!AS1R2

h(Q[A=(v1&1B1[A1=(v2&2B2)])])��;��i. By Lemma 13 we can conclude
that �� = �
[Var(Q)], and hence the third state in D coincides syntac-
tically with the second one in D0. Moreover, by the inductive hypothesis
� = �0[Var(Q)] and hence the entire admissible derivations D and D0 are
equivalent, as we wanted to prove.

(2) Unfolding based on Rule 2.
Let R : hH1 1 B1[A1]; v1i 2 P and R2 : hH2 ; v2i 2 P such that, by
unfolding R w.r.t. R2 using the second rule in De�nition 3, we obtain:
R0 : h(H1 1 B1[A1=v2])�; v1i 2 P 0. Then, D0 has the following form:

17

hQ[A];idi!AS1R0h(Q[A=(v1&1B1[A1=v2])])�
;�
i!AS�h@(r1; : : : ; rn);�0i.
Now, the �rst step of D0 can be simulated in derivation D by using rulesR
and R2 as follows: hQ[A]; idi !AS1R h(Q[A=(v1&1B1[A1])])�;�i !AS2R2

h(Q[A=(v1&1B1[A1=v2])])��;��i. By Lemma 13 we can conclude that
�� = �
[Var(Q)], and hence the third state in D coincides syntacti-
cally with the second one in D0. Moreover, by the inductive hypothesis
� = �0[Var(Q)] and hence the entire admissible derivations D and D0 are
equivalent, as we wanted to prove.

(3) Unfolding based on Rule 3.
Let R : hH1 1 B1[A1]; v1i 2 P such that, the selected atom A1 in B1does not unify with the head of any rule in P , and hence, by unfolding
R using the third rule in De�nition 3, we obtain the new unfolded rule:
R0 : hH1 1 B1[A1=?]; v1i 2 P 0. Then, D0 has the following form:
hQ[A]; idi!AS1R0h(Q[A=(v1&1B1[A1=?])])�;�i!AS�h@(r1; : : : ; rn); �0i:

And now, the �rst step of D0 can be simulated in P by giving two reso-
lution steps in D: the �rst one with rule 1 using R and the second one
with rule 3. That is: hQ[A]; idi!AS1Rh(Q[A=(v1&1B1[A1])])�;�i!AS3h(Q[A=(v1&1B1[A1=?])])�;�i. Since this last state coincides syntactically
with the second one in D0, our claim holds by the inductive hypothesis.

Now, we proceed with the counterpart of the previous Theorem, that is, the
strong completeness of the fuzzy unfolding transformation.
Theorem 15 (Strong Completeness) Let P be a Le{program and let Q
be a Le{goal. If P 0 is a Le{program obtained by fuzzy unfolding of P, then,
hQ; idi!AS�h@(r1; : : : ; rn); �0i in P 0, if hQ; idi!AS�h@(r1; : : : ; rn); �i in P,
where ri 2 L for any i 2 f1; : : : ; ng and �0 = �[Var(Q)].
PROOF. Our proof consists in simulating in P 0 a re{ordered admissible
derivation originally performed in P . So, consider the following (generic) k{
steps admissible derivation for Q in P , D0 : [hQ; idi!ASkh@(r1; : : : ; rn); �0i].Assume now that R 2 P is the rule unfolded in P which obviously does not
belong to P 0. Any existing step done with rule R in D0 introduces an instance
of the body of R in the next state of the derivation. Since we are dealing
which an admissible successful derivation, this instanced body of R must nec-
essarily be reduced in the immediately next step or in subsequent ones. For
the second case, we can safely interchange the step done with rule R and the
next one, by application of the Switching Lemma 9. Moreover, by repeated
application of this Lemma, we can obtain a new k{steps admissible derivation
D : [hQ; idi!ASkh@(r1; : : : ; rn); �i] in P verifying � = �0[Var(Q)], where any
step (if it exists) using the rule R unfolded in P , is followed by other step
exploiting an atom just introduced by the previous step (i.e., belonging to the
instanced body of R). We say that D is an admissible derivation re{ordered

18

w.r.t. rule R.
Now, and similarly to the previous theorem, we are going to simulate D
in P 0 by constructing a new derivation D0 using the rules of P 0 and fol-
lowing an schema perfectly analogous to the one used in Theorem 14, but
inverting now the use of terms P and P 0 (and related ones). The construc-
tion of D0 is done by induction on the length of D, k. Since the case base,
i.e. k = 0, is trivial, we proceed with the general case when k > 0. Then,
D : [hQ; idi!AShQ0;#i!AS�h@(r1; : : : ; rn); �i]. If the �rst step of D has been
given with the second or third rule of De�nition 3, or, even it is has been per-
formed with the �rst one but using a rule also belonging to P 0, then the claim
follows by the inductive hypothesis. Otherwise, this initial step is done with
!AS1 using a rule R that, once it is unfolded, generates the new transformed
rule R0 2 P 0. Since the unfolding step has been performed with one of the
three rules of De�nition 3, we treat each case separately.
(1) Unfolding based on Rule 1.

Let R : hH1 1 B1[A1]; v1i 2 P and R2 : hH2 2 B2; v2i 2 P such that,
by unfolding R w.r.t. R2 using the �rst rule in De�nition 3, we obtain
R0 : h(H1 1 B1[A1=(v2&2B2)])�; v1i 2 P 0. Assuming that A is the se-
lected atom in Q when building derivation D, and having into account
that D is an admissible derivation reordered w.r.t. rule R, then it has the
the following form: hQ[A]; idi!AS1Rh(Q[A=(v1&1B1[A1])])�;�i!AS1R2

h(Q[A=(v1&1B1[A1=(v2&2B2)])])��;��i!AS�h@(r1; : : : ; rn); �i. Now, the
�rst two steps of D can be simulated in P 0 by using rule R0 in derivation
D0 as follows: hQ[A]; idi!AS1R0h(Q[A=(v1&1B1[A1=(v2&2B2)])])�
;�
i
!AS�h@(r1; : : : ; rn); �0i. By Lemma 13 we have that �� = �
[Var(Q)],
and hence the third state in D coincides syntactically with the second one
in D0. Moreover, by the inductive hypothesis � = �0[Var(Q)] and hence
the entire admissible derivations D and D0 are equivalent, as we wanted
to prove.

(2) Unfolding based on Rule 2.
Let R : hH1 1 B1[A1]; v1i 2 P and R2 : hH2 ; v2i 2 P such that, by
unfolding R w.r.t. R2 using the second rule in De�nition 3, we obtain:
R0 : h(H1 1 B1[A1=v2])�; v1i 2 P 0. Since D is an admissible derivation
reordered w.r.t. rule R, and assuming that A is the selected atom in Q,
then D has the form: hQ[A]; idi!AS1Rh(Q[A=(v1&1B1[A1])])�;�i!AS2R2

h(Q[A=(v1&1B1[A1=v2])])��;��i!AS�h@(r1; : : : ; rn); �i. And now, the
�rst two steps in D can be simulated in P 0 by using rule R0 as follows:
hQ[A]; idi!AS1R0h(Q[A=(v1&1B1[A1=v2])])�
;�
i!AS�h@(r1; : : : ; rn);�0i.
By Lemma 13 we can conclude that �� = �
[Var(Q)], and hence the
third state in D coincides syntactically with the second one in D0. More-
over, by the inductive hypothesis � = �0[Var(Q)] and hence the entire
admissible derivations D and D0 are equivalent, as we wanted to prove.

19

(3) Unfolding based on Rule 3.
Let R : hH1 1 B1[A1]; v1i 2 P such that, the selected atom A1 in
B1 does not unify with the head of any rule in P , and hence, by un-
folding R using the third rule in De�nition 3, we obtain the new un-
folded rule R0 : hH1 1 B1[A1=?]; v1i 2 P 0. Assuming that A is the
selected atom in Q when building derivation D, and having into ac-
count that D is an admissible derivation reordered w.r.t. rule R, then it
has the following form: hQ[A]; idi!AS1Rh(Q[A=(v1&1B1[A1])])�;�i!AS3h(Q[A=(v1&1B1[A1=?])])�;�i!AS�h@(r1; : : : ; rn); �i. And now, the �rst
two steps of D can be simulated in derivation D0 by using rule R0 as fol-
lows: hQ[A]; idi!AS1R0h(Q[A=(v1&1B1[A1=?])])�;�i. Since this last state
coincides syntactically with the third one in D, our claim holds by the
inductive hypothesis.

Now, we are able to formalize and prove the best properties of fuzzy unfolding
(namely, its strong correctness and the guarantee that it produces improve-
ments on transformed programs) as follows:
Theorem 16 (Strong Correctness of Fuzzy Unfolding) Let P be a
Le{program, and let Q be a Le{goal. If P 0 is a Le{program obtained by fuzzy
unfolding of P, then,
hQ; idi!ASnh@(r1; : : : ; rk); �i in P i� hQ; idi!ASmh@(r1; : : : ; rk); �0i in P 0,where ri 2 L for any i 2 f1; : : : ; kg, � = �0[Var(Q)] and m � n.

PROOF. The two claims of Theorem 16 can be easily proved as follows:
� The strong correctness of the transformation, i.e., the equivalence of fuzzy

computed answers obtained when executing a goal w.r.t. original and un-
folded programs, is immediate by simply applying Theorems 14 and 15.
� Regarding the reduction of the length of admissible derivations in trans-

formed programs, we have seen in proofs of both theorems 14 and 15 that
any fuzzy admissible step done with a new rule, obtained after applying
fuzzy unfolding, subsumes two fuzzy admissible steps done with rules of the
original program, which con�rms that m � n, as we wanted to prove.

7 Conclusions

This work introduces a safe transformation rule for unfolding fuzzy multi{
adjoint logic programs. To the best of our knowledge, this is the �rst time this
issue, of integrating transformation techniques in the context of fuzzy multi{
adjoint logic languages, is treated in the literature. We have de�ned the notion

20

of fuzzy unfolding of multi{adjoint logic programs (De�nition 11) and we have
demonstrated the (strong) correctness (Theorem 16) of the transformation
rule as well as its capability to produce signi�cant improvements on the �nal
code.
It is well{known in the literature on program transformation that since un-
folding generally increases the size of residual programs, more (secondary and
heap) memory is needed for storing them. However, the stack memory required
at execution time usually decreases, mainly due to the reduction in the length
of derivations (in declarative programing, there is a direct correspondence be-
tween derivation states and elements pushed on the system stack). These facts
justify the bene�ts (not only in time, but also in space) of using unfolding.
As an additional advantage, transformation sequences built by only using un-
folding, can be guided in a blind way since any transformation step always
produces an improvement on transformed programs. This contrasts with other
transformation rules, such as de�nition introduction or folding, whose usage
may degrade the e�ciency of programs, if appropriate \transformation strate-
gies" are not used to drive the construction of the transformation sequence.
On the other hand, it is well established that certain transformation strategies,
such as composition or tupling, are able to change the original program algo-
rithmic complexity and to obtain even super{linear speedups. Unfolding can
be combined jointly with other transformation rules and using transformation
strategies to increase its power.
The results in this paper can be thought as a basis to optimize fuzzy multi{
adjoint logic programs and they are the �rst step in the construction of a
fold/unfold framework for optimizing this class of programs.

Acknowledgment

We are very grateful to anonymous reviewers for providing us worthy material
and suggestive discussions on fuzzy logic programming which helped us to
highly improve this paper.
We are also grateful to P. Vojt�a�s and M. Ojeda-Aciego to allow us free access
to their works.

References

[1] H. Nguyen, E. Walker, A First Course in Fuzzy Logic, Chapman & Hall/CRC,Boca Rat�on, Florida, 2000.

21

[2] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, 1987,second edition.
[3] F. Arcelli, F. Formato, Likelog: A logic programming language for
exibledata retrieval, in: Proc. of the 1999 ACM Symposium on Applied Computing(SAC'99), San Antonio, Texas, USA, ACM, New York, 1999, pp. 260{267.
[4] P. Vojt�a�s, L. Paul��k, Soundness and completeness of non-classical extendedSLD-resolution, in: R. D. et al (Ed.), Proc. of Extensions of Logic Programming,ELP'96, Leipzig, Springer Verlag, LNCS 1050, 1996, pp. 289{301.
[5] P. Vojt�a�s, Fuzzy Logic Programming, Fuzzy Sets and Systems 124 (1) (2001)361{370.
[6] J. Medina, M. Ojeda-Aciego, P. V. s, Multi-adjoint logic programming withcontinuous semantics, in: Proc. of Logic Programming and Non-MonotonicReasoning, LPNMR'01, Springer-Verlag, LNAI 2173, 2001, pp. 351{364.
[7] J. Medina, M. Ojeda-Aciego, P. Vojt�a�s, A procedural semantics for multi-adjointlogic programming, in: Proc. of Progress in Arti�cial Intelligence, EPIA'01,Springer-Verlag, LNAI 2258, 2001, pp. 290{297.
[8] J. Medina, M. Ojeda-Aciego, P. Vojt�a�s, Similarity-based uni�cation: a multi-adjoint approach, Fuzzy Sets and Systems 146 (1) (2004) 43{62.
[9] S. Guadarrama, S. Mu~noz, C. Vaucheret, Fuzzy prolog: A new approach usingsoft constraints propagation, Fuzzy Sets and Systems 144 (1) (2004) 127{150.
[10] A. Pettorossi, M. Proietti, Rules and Strategies for Transforming Functionaland Logic Programs, ACM Computing Surveys 28 (2) (1996) 360{414.
[11] R. Burstall, J. Darlington, A Transformation System for Developing RecursivePrograms, Journal of the ACM 24 (1) (1977) 44{67.
[12] H. Tamaki, T. Sato, Unfold/Fold Transformations of Logic Programs, in:S. T�arnlund (Ed.), Proc. of Second Int'l Conf. on Logic Programming, 1984,pp. 127{139.
[13] M. Alpuente, M. Falaschi, G. Moreno, G. Vidal, Rules + Strategies forTransforming Lazy Functional Logic Programs, Theoretical Computer Science311 (2004) 479{525.
[14] A. Pettorossi, M. Proietti, A Comparative Revisitation of Some ProgramTransformation Techniques, in: O. Danvy, R. Gl�uck, P. Thiemann (Eds.),Partial Evaluation, Int'l Seminar, Dagstuhl Castle, Germany, Springer LNCS1110, 1996, pp. 355{385.
[15] P. Julian, G. Moreno, J. Penabad, Unfolding Fuzzy Logic Programs, in: Proc.of the Fourth International Conference on Intelligent Systems Design andApplications, ISDA'04, Budapest, Hungary, (Sponsored by IEEE), 2004, pp.595{600.

22

[16] J.L. Lassez, M. J. Maher, K. Marriott, Uni�cation Revisited, in: J. Minker(Ed.), Foundations of Deductive Databases and Logic Programming, MorganKaufmann, Los Altos, Ca., 1988, pp. 587{625.
[17] C. Palamidessi, Algebraic Properties of Idempotent Substitutions, in:M. Paterson (Ed.), Proc. of the 17th Int'l Colloquium on Automata, Languagesand Programming, Springer LNCS 443, 1990, pp. 386{399.
[18] P. Julian, C. Villamizar, Analizing De�nitional Trees: Looking for Determinism,in: Y. Kameyama, M. P. J. Stuckey (Eds.), Proc. of the 7th Fuji InternationalSymposium on Functional and Logic Programming, FLOPS'04, Nara, Japan,Springer-Verlag, LNCS 2998, 2004, pp. 55{69.

23

