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Abstract

Partial evaluation is a method for program specialization
based on fold/unfold transformations [8, 25]. Partial evalu-
ation of pure functional programs uses mainly static values
of given data to specialize the program [15, 44]. In logic pro-
gramming, the so-called static/dynamic distinction is hardly
present, whereas considerations of determinacy and choice
points are far more important for control [12]. We discuss
these issues in the context of a (lazy) functional logic lan-
guage. We formalize a two-phase specialization method for
a non-strict, first order, integrated language which makes
use of lazy narrowing to specialize the program w.r.t. a
goal. The basic algorithm (first phase) is formalized as an
instance of the framework for the partial evaluation of func-
tional logic programs of [2, 3], using lazy narrowing. How-
ever, the results inherited by [2, 3] mainly regard the termi-
nation of the PE method, while the (strong) soundness and
completeness results must be restated for the lazy strategy.
A post-processing renaming scheme (second phase) is nec-
essary which we describe and illustrate on the well-known
matching example. This phase is essential also for other non-
lazy narrowing strategies, like innermost narrowing, and our
method can be easily extended to these strategies. We show
that our method preserves the lazy narrowing semantics and
that the inclusion of simplification steps in narrowing deriva-
tions can improve control during specialization.

Keywords: integration of functional and logic program-
ming, term rewriting systems, lazy narrowing, partial eval-
uation, post-processing renaming.

1 Introduction

Many proposals for the integration of functional and logic
programming are based on narrowing (see [18] for a recent
survey). Narrowing is a natural extension of the evalua-
tion mechanism of functional languages to incorporate uni-
fication. Narrowing solves equations by computing unifiers
w.r.t. an equational theory usually described by means of
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a (conditional) term rewriting system. In order to avoid
useless computations and to deal with nonterminating and
nonstrict functions, lazy narrowing strategies have recently
been proposed [4, 29, 35, 39]. One main advantage of an
integrated functional logic language is the reduction of the
search space by exploiting functional computations. Hence,
an important improvement of (lazy) narrowing is the in-
corporation of deterministic simplification steps which can
largely reduce both run time and search space in compar-
ison to pure logic programs, since normalization can avoid
the creation of useless choice points in sequential implemen-
tations [17, 18].

Program specialization refers to the technique of how to
derive a specialized instance of a program to a restricted
set of inputs. Particular cases include Partial Evaluation
(PE) of functional [25] and logic [12, 34] programs. PE of
functional programs, as in [25], is usually restricted to con-
stant (static values) propagation, whereas PE techniques for
logic languages exploit unification-based information propa-
gation, which results in more powerful transformations. The
basic technique for PE of logic programs was presented in
[12]. Turchin’s driving transformation for functional pro-
grams achieves the same effect as the PE of logic programs,
by virtue of unification [15, 45, 46].

The PE of functional logic languages is a relatively new
area of research. As far as we know, [2, 3] formalize the first
PE scheme for functional logic languages which can improve
the original program w.r.t. the ability of computing the set
of answer substitutions. In contrast to the approach usu-
ally taken with pure functional languages, in [2] we use the
unification-based computation mechanism of narrowing for
the specialization of the program as well as for the execu-
tion. The basic PE algorithm is parametric w.r.t. the nar-
rowing strategy which is used for the automatic construction
of (finite) narrowing trees. We have defined the notions of
closedness and independence that are essential to prove the
computational equivalence of the original and the partially
evaluated programs, for a restricted set of goals. We have
proved that these conditions suffice for correctness in the
case of unrestricted narrowing. An appropriate abstraction
operator is also introduced which guarantees termination of
the PE process. However, the independence condition which
guarantees that the derived program does not produce addi-
tional answers is not obtained automatically and, for some
particular narrowing strategies, the partially evaluated pro-
gram might not satisfy the restrictions on the theories which
are necessary for the completeness of the strategy.

In this paper, we formalize a call-by-name partial eval-



uator for functional logic languages with a lazy narrowing
semantics like that of [39]. Then, we formalize a renaming
transformation of the residual program, which removes any
remaining lack of independence. This is a post-processing
stage whereby new function symbols are introduced and a
transformed program and goal are obtained. We prove that,
for the renamed queries, the transformed program computes
the same answers as the original program. We note that
the post-processing phase is also crucial to guarantee the
correctness of the whole process. In general, the partially
evaluated program resulting from the PE phase might not
satisfy one of the basic assumptions for the completeness of
lazy narrowing (the so-called ‘constructor discipline’), which
may prevent the lazy strategy from being able to narrow a
goal in the partially evaluated program. As a rough exam-
ple, consider the following

Example 1 Consider the program R = {f(x) — x} which
derives the residual program R':

£0) — 0
ff(x)) — x

when specialized w.r.t. the function calls £(f(x)) and £(0).
This program contains a nested function application £(£(x)).
Also, the considered set of specialized calls {£(0),f(f(x))} is
not independent, since it contains two different pairs of in-
terfering calls, namely £(0) with £(x) and £(x) with £(f(x)).

The post-processing phase generates a constructor based
program, i.e., no left-hand side argument contains a defined
function symbol, and the renamed set of calls is independent.
Our method is also useful for non lazy narrowing strategies,
such as innermost narrowing. Also in this case the resulting
program must be constructor based. The extension of our
method is easy [1].

Our method passes the so-called Knuth-Morris-Pratt test
[15, 24], i.e. the specialization of a naive pattern matcher
w.r.t. a fixed pattern essentially obtains the efficiency of the
Knuth, Morris and Pratt matching algorithm [27].

‘We show that the inclusion of a normalization process be-
tween narrowing steps not only saves time and space but also
yields a better optimization strategy which does not increase
the size of the program since no choices are unfolded. We
show that, by using normalization, it is possible to improve
the ability to eliminate intermediate data structures with a
narrowing-based partial evaluator. We also prove that the
partial evaluator can achieve in a principled, non ad-hoc
way, the same transformation effect as some (postunfold-
ing) techniques that eliminate intermediate functions in the
driving approach to program specialization [15, 42, 43]. The
preference for deterministic computations is a good heuris-
tic to avoid code explosion which is also comparable to the
determinism-based criterium of [13] that explores maximal
deterministic paths.

1.1 Plan of the Paper

The structure of the paper is as follows. Basic definitions are
given in Section 2. Section 3 recalls the general scheme for
the PE of functional logic languages of [2]. In Section 4, a
two-phase specialization method is described and shown to
be correct. Section 5 discusses the related work and Section
6 concludes. More details and missing proofs can be found
in [1].

2 Preliminaries

We briefly recall some known results about rewrite systems
and functional logic programming [10, 18, 21, 26]. Through-
out this paper, V will denote a countably infinite set of
variables and ¥ denotes a set of function symbols f/n, each
with a fixed associated arity n. 7(X U V) and 7(X) denote
the sets of terms and ground terms built on ¥ and V, re-
spectively. We assume that the alphabet % contains some
primitive symbols, including at least the nullary constructor
true and a binary equality function symbol, say =, writ-
ten in infix notation, which allows us to interpret equations
s = t as terms, with s,t € 7(2 UV). The term true is
also considered an equation. Terms are viewed as labeled
trees in the usual way. Occurrences are represented by se-
quences, possibly empty, of natural numbers used to address
subterms of t, and they are ordered by the prefix ordering:
u < v if there exists w such that uw = v. We let A denote
the empty sequence. O(t) denotes the set of occurrences
of a term t. Oy (t) and O(t) denote the set of variable
occurrences and nonvariable occurrences of the term t, re-
spectively. t, is the subterm at the occurrence u of t. t[r],
is the term t with the subterm at the occurrence u replaced
with r. These notions extend to sequences of equations in
a natural way. For instance, the nonvariable occurrence set
of a sequence of equations g = (ei1,...,en) can be defined
as follows: O(g) = {i.u | u € O(e;),i =1,...,n}. Identity
of syntactic objects is denoted by =. Var(s) is the set of
distinct variables occurring in the syntactic object s.

We restrict our interest to the set of idempotent substitu-
tions over 7(X UV), which is denoted by Sub. The identity
function on V is called the empty substitution and denoted
€. In abuse of notation, Dom(c) = {x € V| x0 # x} is
called the domain of o and Cod(c) = {xo | x € Dom(o)}
is called the codomain of o. Given a substitution 8 and a
set of variables W C V, we denote by fw the substitution
obtained from 6 by restricting its domain, Dom(8), to W.
We write § = v [W] if xf = xy Vx € W. We consider the
usual preorder on substitutions <: § < ¢ iff 3y.0 = 6. This
preorder induces a partial (pre-)ordering on terms given by:
t < t’ iff 3y.t' = ty. The equational representation of a
substitution § = {x1/t1,...,Xn/tn} is the set of equations
0 = {x1 = t1,...,Xn = tn}. A substitution 0 is a unifier
of an equation set E iff § = E. A set of equations E is
unifiable, if there exists ¥ € Sub such that for all s = t
in E. s = t¥. ¢ is called a unifier of E. We let mgu(E)
denote the most general unifier of the equation set E (see,
e.g., [30]). A renaming is a substitution p for which there
exists the inverse p~! such that pp~! = p~lp = e Two
terms t and t' are variants (of each other), if there exists
a renaming p such that tp = t'. A generalization of the
nonempty set of terms {t1,...,tn} is a pair (t,{01,...,0n})
such that, for all i = 1,...,n, t6; = t;. The pair (t,0) is
the most specific generalization (msg) of a set of terms S,
written (t,0) = msg(S), if 1) (t,0) is a generalization of
S, and 2) for every other generalization (t',©’') of S, t' is
more general than t (i.e. t' < t). The msg of a set of terms
is unique up to variable renaming.

An equational Horn theory £ cousists of a finite set of
equational Horn clauses of the form e < C. The head e
is an equation (A = p) and the condition C is a (possibly
empty) sequence ei,...,en, n > 0, of equations. Variables
in C or p that do not occur in X are called extra-variables.
An equational goal is an equational Horn clause with no



head. We let Goal denote the set of equational goals. We
often leave out the <= symbol when we write goals.

Each equational Horn theory £ generates a smallest con-
gruence relation =¢ called £-equality on the set of terms
7(XUV) (the least equational theory which contains all logic
consequences of £ under the entailment relation |= obeying
the axioms of equality for £). € is a presentation or ax-
iomatization of =¢. In abuse of notation, we sometimes
speak of the equational theory £ to denote the theory ax-
iomatized by £. Given two terms s and t, we say that they
are £-unifiable iff there exists a substitution o such that
so =¢ to. The substitution o is called an £-unifier of
s and t. By abuse of notation, it is often called solution.
£-unification is semidecidable. Given a set of variables
W C V, f-equality is extended to substitutions in the
standard way, by o =¢ 6 [W]iff xo =¢ x0 VYx € W. W
will be omitted if equal to V. We say o is an £-instance
of ¢/ and o’ is more general than o on W, in symbols
o' <¢g o [W]iff (3p) 0 =¢ o'p[W]. A set S of £-unifiers
of the equation set E is complete iff every E-unifier o of E
factors into o =¢ 67y [Var(E)] for some substitutions § € S
and . A complete set of £-unifiers of a system of equations
may be infinite.

A Conditional Term Rewriting System (CTRS for short)
is a pair (X, R), where R is a finite set of reduction (or
rewrite) rule schemes of the foormr = (A - p < C), A,
p € T(XUV), A ¢ V and Var(p) C Var()). The reduction
rule r is left-linear if \ is a linear term, i.e. no variable
occurs twice or more in A. If a rewrite rule has no condition
we write A — p. We will often write just R instead of (X, R).

Operationally, equational Horn clauses will be used as
conditional rewrite rules. A term s conditionally rewrites
to a term t, written s —x t, if there exists u € O(s),
(A= p <« s1 =t1,...,s0 = ty) € R and substitution
o such that sy, = Ao, t = s[polu and Vi. 1 <i < n. Iw;
such that sjc =% w; g < tio. The CTRS R is said to be
confluent if, for all terms s, t1, t2 with t1 g« s =% to,
there exists a term ts3 such that t; —% t3 g t2. R is weak
orthogonal if each rule of R is left-linear and R contains
only trivial critical pairs. R is normal if the terms t1,...,tn
in the condition s; = t1,...,8n = tn of each program rule
are ground normal forms w.r.t. the unconditional part of
the CTRS. Weakly orthogonal normal CTRSs are confluent
[6, 26]. A term s is a normal form, if there is no term t
with s —-r t. We let s | denote the normal form of s.
A substitution o is normalized, if xo is a normal form for
all x € Dom(o). For CTRS R, r < R denotes that r
is a new variant of a rule in R such that r contains no
variable previously met during computation (standardised
apart). A CTRS is decreasing if there exists a well-founded
extension > of the rewrite relation — with the following
properties: 1) > has the subterm property, i.e. t > t, for
alue Ot) —{A},and 2) f (A > p«< C) € Rand g is
a substitution, then Ao > po and Ao > so, Ao > to for all
s =t in C (roughly speaking, in each conditional equation
used for rewriting, the rhs and the condition terms must be
smaller than the lhs w.r.t. some termination ordering).

A function symbol f € X is irreducible iff there is no rule
(A = p <« C) € R such that f occurs as the outermost
function symbol in A, otherwise it is a defined function sym-
bol. In theories where the above distinction is made, the
signature ¥ is partitioned as ¥ = C | F, where C is the set
of irreducible (constructor) function symbols and F is the
set of defined function symbols or operations. The terms in
7(C U V) are called constructor terms. A substitution o is

(ground) constructor, if xo is (ground) constructor for all
x € Dom(o).

Narrowing Semantics

The computation mechanism of functional logic languages is
based on narrowing, an evaluation mechanism that uses uni-
fication for parameter passing [40]. Narrowing solves equa-
tions by computing unifiers with respect to a given CTRS
(which is called the ‘program’). Given a CTRS R, an equa-
tional goal g conditionally narrows into a goal clause g’
. [urd] [u.6] . 4 N
(in symbols g g, g ~ g orsimply g ~ g), if
there exists an occurrence u € O(g), a standardised apart
variant r = (A = p < C) < R and a substitution 0
such that 6 = mgu({gu = A}) and g’ = (C,g[plu)d. s
is called a (narrowing) redez (reducible erpression) iff there
exists a new variant (A = p < C) of a reduction rule
in R and a substitution o such that so = Ao. A redex
t|y is an outermost redez if there is no redex t|, of t with
u < u. A narrowing derivation for g in R is defined by
g N g iff 361,...,6n. g'@ LA g and 6 = 61...0n.
We say that the derivation has length n. If n = 0, then
0 = €. In order to treat syntactical unification as a narrowing
step, we add the rule (x = x — true), x € V, to the CTRS
R. Then s = t < true holds iff 0 = mgu({s = t}). We use
T as a notation for sequences of the form true,...,true.
A successful derivation for g in R is a narrowing derivation

u,r,
lavsd

g N T, and Ovar(g) is called a computed answer substi-
tution (c.a.s.) for g in R. The narrowing derivations can be
represented by a (possibly infinite) finitely branching tree.
A failing leaf is a goal which is not T and which cannot be
further narrowed. Following [34], we adopt the convention
in this paper that any derivation is potentially incomplete (a
branch thus can be failed, incomplete, successful or infinite).

A narrowing algorithm is complete if it generates a com-
plete set of £-unifiers for all input equation systems. For-
mally, (a kind of) narrowing is complete for (a class of)
CTRS’s if the following condition holds: If so =¢ to, then

there exists a narrowing derivation s =t ~5* T such that
0 <¢ o[Var(s)UVar(t)]. It is well-known that the subscript
€ in 6 <¢ o can be dropped if we only consider completeness
w.r.t. normalized substitutions [37]. Conditional narrowing
has been shown to be a complete £-unification algorithm for
theories satisfying different restrictions [18, 21, 37].

Since unrestricted narrowing has quite a large search
space, several strategies to control the selection of redexes
have been devised to improve the efficiency of narrowing by
getting rid of some useless derivations. A narrowing strategy
(or position constraint) is any well-defined criterion which
obtains a smaller search space by permitting narrowing to
reduce only some chosen positions, e.g. basic [22], inner-
most [11], innermost basic [21] or lazy narrowing [40]. The
innermost and the lazy strategies mimic the strict and lazy
evaluation known from functional programming languages.
Formally, a narrowing strategy ¢ is a mapping that assigns
to every goal g (different from T) a set of triples [4]. If
(u,r,0) € p(g), then u € O(g), r < R, and o is a sub-

stitution such that g (gl g'. An important property of
a narrowing strategy ¢ is completeness, meaning that the
narrowing constrained by ¢ is still complete. A survey of
results about the completeness of narrowing strategies can
be found in [18].



In the case of a confluent and decreasing CTRS R, we
can further improve narrowing without losing completeness
by normalizing the goal before a narrowing step is applied
[23]. It is useful to apply rewriting between narrowing steps,
whenever it is possible, since rewriting may reduce an infi-
nite search space to a finite one and can save a lot of time
and space [18]. A normalizing conditional narrowing step
w.r.t. R, is given by a normalization g —% gl followed by a
narrowing step gl~» g’. The idea of exploiting deterministic
computations by including normalization has been applied
to almost all narrowing strategies, e.g. basic [21, 41], inner-
most [11], innermost basic [21], and lazy narrowing [17].

Lazy narrowing reduces expressions at outermost nar-
rowable positions. Narrowing at inner positions is performed
only if it is demanded (by the pattern in the lhs of some rule)
and contributes to some later narrowing step at an outer
position. Since the notion of “demanded position” is not
unique, different lazy narrowing strategies have been pro-
posed [4, 29, 35, 39, 40] (although some lazy strategies are
“lazier” than others). In the following, we specify our lazy
narrowing strategy, similar to [39].

Lazy Narrowing

The following definitions are necessary for our formalization
of lazy narrowing. An pattern t is an operation applied to
constructor terms, i.e. t = f(ti,...,tx), where f € F and,
foralli=1,...,k, t; € 7(CUV). A CTRS is constructor-
based (CB) if the left-hand side (lhs) of each rule is a pattern.
It implies that there can be neither functional nestings on
the lhs of the head of the clauses nor equations between con-
structors. This is a reasonable class from the functional pro-
gramming point of view. Many functional logic languages
follow this discipline, e.g. ALF [16], Babel [39], K-LEAF
[14], LPG [7], and SLOG [11]. A head normal form is a
variable or a constructor-rooted term. In CB normal pro-
grams, each condition s = t in the body of a program rule
has the property that t is ground constructor [19]. We as-
sume that these conditions hold for all programs we consider
in this paper. This requirement is also made in Babel and
K-LEAF. In practice, this is not a real restriction, since we
can provide an explicit definition of a boolean—valued equal-
ity function = between constructor terms and consider that
an equation s = t in a condition of a CB normal CTRS
denotes the equation (s = t) = true [19].

The unification of redexes of the goal with lhs’s of pro-
gram rules gives rise to the following particular kind of uni-
fication problems.

Definition 2.1 (linear unification problem)
A linear unification problem is a pair of terms:
(f(d17 Ty dn)a f(tla R tﬂ));
where £(d1,...,da) and £(t1,...,tn) do not share variables,
and the term £(di,...,dn) is linear and innermost.

Linear unification problems can be solved by any version
of the unification algorithm (see, e.g., [30]). Following [39],
we distinguish the case when an attempted unification does
not succeed because of a clash between a constructor ¢ and
an operation f, since such a situation can be thought of as
a demand of further evaluation of f. This differs from the
standard syntactic unification algorithm [30]. The follow-
ing is a reformulation of the unification algorithm for linear
unification problems of [39].

Definition 2.2 (LU configuration) An LU configuration
1s a pair (U,o0), where U is a set and o is a substitution.

The following definition adapts the standard syntactic
unification algorithm [30] to the linear unification case. Be-
cause of linearity, an occur-check is not needed.

Definition 2.3 (unification relation —| ;)
We define the unification relation — |y between LU configu-
rations as the smallest relation satisfying:

1. ({C(dl,...,dm) ‘Lu C(tl,...,tm)}UU,O')
—LU ({dl .Lu_l ti,..., dm J,u_m tm} U U, 0’),
where (¢/m) € C,m > 0.
2. ({xlut}ulU,o) -y (U{x/t},o{x/t}),
where t € V.
3. ({diux}UU,0) =y (U{x/d},o{x/d}).
4. ({e(dy,...,dm) du c'(t1,...,tp)} UU,0)
-y ({fail}, o),
where (¢/m), (c'/p) €C, c Z<c', and m,p > 0.

Definition 2.4 (initial LU configuration)

Let (f(di,...,dn),f(t1,...,tn)) be a linear unification
problem. The initial LU configuration s:

(Uo,00) = ({d1 41 t1,...,dn In tn},€).

Linear unification (LU) can either succeed, fail or sus-
pend. When it suspends, it returns the set of positions which
“demand” further evaluation. Formally, given a LU configu-
ration (U, o), a position u is demanded, if (c(d1,...,dm) Ju
g(ti,...,tp)) € U.

Definition 2.5 (behaviour of —|))

Let T' = (f(d1,...,dn),f(t1,...,tn)) be a linear unification

problem. Let (Uo,00) = ({d1 1 t1,...,dn L ta},€) =y

(U,0)ALy- We define the function LU(T) as follows:

(Succ, o) fU=90

(FAIL, 0) if U = {fail}

(DEMAND, P) otherwise, where P is the set
of demanded positions

LU(T) =

Let us define a lazy narrowing strategy (¢, ) as follows.
Roughly speaking, in the following definition, the set-valued
function ¢, (g) returns the set of triples (u, k, o) such that
u € O(g) is a demanded position of g which can be narrowed
by the rule rx with narrowing substitution o. We assume
the rules of R to be numbered with rq,...,rm.

Definition 2.6 (lazy narrowing strategy) We define a
lazy narrowing strategy ¢, : Goal — p(IN* x N x Sub)
which, for a given goal g = (e1,...,en), computes the set of
triples (u,k,o), with u € O(g), k a natural number (indi-
cating the program rule rx) and o a substitution, as follows:

o> (8) = ¢-(&1i),
where i = select_don't_care({1,...,n})
(g, 1) Ui: o-(g, 0, k)
<P——(g7 u, k) = if )‘k[A] = g[u] then
case LU({ Ak, gju)) of
(Succ,0) - {(mk,0)}
(FAIL, ) : 0
{(DEMAND, P): Uuep p-(gun)
else

where rk = (A = px < Ck) < R and the “choice” func-
tion select_don’t_care(S) arbitrarily chooses one element
of the set S accordingly to some fized criterium.



Our lazy strategy is essentially equivalent to the demand
driven reduction mechanism formalized in [39], where se-
quences of equations are interpreted as terms by defining
the boolean conjunction operation ‘,’ as a binary predefined
symbol (whose rules are implicitly added to the program).
As opposed to [39], our lazy narrowing calculus manipulates
sequences of equations rather than terms, as in other lazy
narrowing calculi (e.g. [21]).

We would like to note that there are three sources of
nondeterminism in our narrowing calculus: the choice of
the equation, given by i, the choice of the subterm, given by
u, and the choice of the program rule, given by k. The last
two choices are don’t-know nondeterministic, meaning that
in general all possible choices have to be considered to ensure
completeness. Only the choice of the equation is don’t-care
nondeterministic. In general, for the selected equation, the
set of lazy redexes is not a singleton, and all such redexes
have to be narrowed (trying to apply all program rules to
each one) to guarantee completeness.

Definition 2.7 (lazy conditional narrowing)
We define lazy conditional narrowing as a labeled transition

system (Goal, Sub,~»). ) whose transition relation ~», C (Goalx

Sub x Goal) is the smallest relation which satisfies:
(1,k,0) € pp(@A T =(A 5 p<C) <R
g ~» (C glolu)o

Similarly to the formalization of [39], our calculus al-
lows some narrowing derivations that do not contribute to
any later steps. It is not difficult to strengthen the demand
driven nature of our strategy by somehow forcing the use
of the rule that demands evaluation of a suspended argu-
ment [18, 29, 35, 39]. [4] presents an optimal lazy narrowing
strategy (for a restricted class of programs) which avoids su-
perfluous steps by dropping the restriction to mgu’s. Since
these types of optimizations are not relevant to the subject
of this paper, we do not consider them here for the sake of
simplicity.

Due to the presence of nonterminating functions, com-
pleteness results for lazy narrowing are stated w.r.t. a non-
standard interpretation of equality. Functional logic lan-
guages with a lazy narrowing operational semantics define
the validity of an equation as a strict equality = on terms.
Strict equality regards two terms as equal iff they have the
same ground constructor normal form. The semantics of =
is defined by the following set STREQ of confluent CB rules:
STREQ = {c(x1,...,%n) & c(y1,- .-
¥Yi,--;Xn " yn | (¢/n) € C, n > 0}.
Note that strict equality does not have the reflexivity prop-
erty t = t for all terms t. When we consider lazy narrowing,
we assume that the equality symbol in the goal (and in the
conditions of program rules) is ~.

In weakly orthogonal, CB programs, lazy narrowing is
complete w.r.t. STREQ for constructor substitutions:

,Yn) — true & x1 &

Proposition 2.8 [18, 39] Let R be a weakly orthogonal, CB
program, g be a goal and o be a (ground constructor) sub-
stitution such that, for all s =t in g, there exists a ground
constructor term u s.t. so —x u and to —% u. Then,
there is a c.a.s. 0 of (RU STREQ) U {g} using ~,, and a
substitution 7y such that 6y = o[Var(g)].

In [17], Hanus showed how deterministic (lazy) simpli-
fication steps can be performed between nondeterministic

(lazy) narrowing steps without loosing completeness. Rough-
ly speaking, in the presence of nonterminating functions,
only a terminating subset of the program rules is used for
simplification’. Example 3 in Section 4 shows how the inte-
gration of simplification into (lazy) narrowing derivations is
not only a main source for speedups but can also strengthen
the specialization, with the added benefit that the optimiza-
tion is ‘compiled-in’ in the program.

3 Partial Evaluation of Functional Logic
Programs

In this section, we recall a generic procedure for the PE of
functional logic programs which appeared in [2]. Our algo-
rithm is generic w.r.t. 1) the narrowing relation that con-
structs search trees, 2) the unfolding rule which determines
when and how to terminate the construction of the trees, and
3) an abstraction operator used to guarantee the finiteness
of the PE process. We let ~», denote a generic (possibly
normalizing) narrowing relation which uses the narrowing
strategy . The definitions of this section are quoted from
[2]-

Definition 3.1 (resultant)
Let R be a program and s =y an equation, where the vari-

able y & Var(s). Let [(s = y) ,\,9,; g, €| be a derivation in
R. Let o = mgu(e). Then the resultant of the derivation
18: (s > y)8 < g)o.

Example 2 Let the rule (f(x) - x < a = x,b = x) be in

R. The resultant of the lazy narrowing derivation:

1. f(z) =y {'d’:} axx,bxx,x~Yy] s the rule:
fy) > y<a~xy,bxy.
Note that, without applying the mgu o = {x/y} (¢ =
{y/x}) of the last equation x =y, we would have 0b-
tained the rule: f(x) >y €« a= x,b ® x,x )} y,
which contains an eztra-variable y in the rhs of the
head.

2. f(z) =y {1,4:} axx,brxxxy {'ﬂ:} true,b =~
a,ary]is: f(a) > a< true,b=xa.

A PE is derived by extracting rules from non-failing,
root-to-leaf paths in a narrowing tree.

Definition 3.2 (partial evaluation of a term)

Let T be a finite (possibly incomplete) narrowing tree for the
goals =y (y & Var(s)) in the program R containing at least
one nonroot node. Let {g; | i=1,...,k} be the nonfailing
leaves of T and R' = {r; |i=1,...,k} the resultants asso-
ciated with the derivations {(s = y) i’»‘t gi|i=1,...,k}.
Then, R’ is a PE of s in R (using 7).

The above definition lifts in the natural way to partial
evaluation of a set of terms S (which are considered modulo
variants). A partial evaluation of an equational goal s1 =
ti,...,sn =ty in R is the partial evaluation in R of the set
{Sl,tl, . ,Sn,tn}.

Following [34], we introduce a closedness condition which
guarantees that all calls which might occur during the execu-
tion of the resulting program are covered by some program

n the conditional case, the additional requirement for decreasing
rules is needed [18].



rule. The function terms(O) extracts the terms appearing
in the syntactic object O.

Definition 3.3 (closedness) Let S and T be two finite
sets of terms. We say that T is S-closed if closed(S,T),
where the predicate closed is defined inductively as follows:
closed(S, 0) &
true fO=0dor0O=x€eV
closed(S,t1) A ... A closed(S,txs)
sz = {tl,...,tn}
. ,tn})
if O =c(t1,...,tn), c€C
(I3s€S.s6=0) A closed(S,terms(é\))
if O =f(t1,...,tn), fEF

closed(S, {t1, ..

We say that a program R is S-closed if closed(S, terms(R)).

Now we introduce an independence condition which guar-
antees that the derived program R’ does not produce addi-
tional answers. In the case of pure logic programming, only
(pairwise) non-unifiability of the partially evaluated calls
(atoms) in S is required for ensuring the independence of
the resultant procedures thus guaranteeing the strong cor-
rectness of the transformation. We need a more involved
condition. Namely, we have to consider overlaps among the
specialized calls (see [3]).

Definition 3.4 (overlap) A term s overlaps a term t if
there is a nonvariable subterm s|, of s such that sjy and t
unify. If s = t, we require that t be unifiable with a proper
nonvariable subterm of s.

Definition 3.5 (independence) A set of terms S is in-
dependent if there are no terms s and t in S such that s
overlaps t.

Given a goal g and a program R, in general, there exists
an infinite number of different partial evaluations of g in
R. A fixed rule for generating resultants called an unfold-
ing rule is used, which ensures that infinite unfolding is not
attempted.

Definition 3.6 (unfolding rule) An unfolding rule U, is

a function which, when given a program R, a term s and

a narrowing relation ~»,, returns o finite set of resultants

U, (s, R) that is a partial evaluation of s in R using ~»,.
This definition lifts naturally to a set of terms S.

Starting with the set of calls (terms) which appear in
the initial goal g, we partially evaluate them by using a fi-
nite unfolding strategy, and recursively specialize the terms
which are introduced dynamically during this process. As-
suming that it terminates, the procedure computes a set of
partially evaluated terms S’ and a set of rules R’ (the PE
of S’ in R) such that the closedness condition for R’ U {g}
is satisfied.

We let c[S] € State denote a generic configuration whose
structure is left unspecified as it depends on the specific PE
algorithm, but which includes at least the set of partially
evaluated terms S. When S is clear from the context, c[S]
will simply be denoted by c.

Definition 3.7 (PE transition relation —p)
We define the PE relation —pC State x State as the
smallest relation satisfying:

R =U,(S,R)
c[S] —» abstract(c[S], terms(R’))

where the function abstract(c,T) eztends the current con-
figuration ¢ with (an abstraction of ) the set of terms T which
are not closed w.r.t. S, giving a new PE configuration.

Similarly to [36], applying abstract in every iteration
allows us to tune the control of polyvariance as much as
needed. Also, it is within the abstract operator that the
progress towards termination resides.

Definition 3.8 (behaviour of the —p calculus)

Let co be the “empty” PE state. We define the function:
P(R,g) = S if abstract(co,terms(g)) —p c[S] and
C[S] —>p C[S]

The PE procedure in Definition 3.8 computes the set
of partially evaluated terms S which unambiguously deter-
mines its associated PE R’ in R (using U,).

4 A Call-by-Name Partial Evaluator

In this section, we formulate an instance of the generic PE
procedure introduced in Definition 3.8 and show how it works.
We consider the (normalizing) lazy conditional narrowing
~», of Section 2 to construct search trees. We define a hnf-
PE R’ of sin R as a PE of s in R such that each derivation
used to build R’ has the form [(s = y) ﬁj, g (s =y,
where the equality symbol of the original equation is not
narrowed using the rules STREQ. This restriction avoids the
term s to be evaluated beyond the form possibly demanded
by a context.

In [2], we have developed a rather simple criterium for
avoiding looping. Our strategy is based on the intuitive no-
tion of orderings in which a term that is “syntactically sim-
pler” than another is smaller than the other. The following
definition extends the homeomorphic embedding (“syntacti-
cally simpler”) relation [10] to nonground terms. In [31], an
extension of this relation is defined which provides a finer
handle of variables.

Definition 4.1 (embedding relation [43])

The homeomorphic embedding relation < on terms in
T(XUV) is defined as the smallest relation satisfying: x 1y
for allx,y € V, and s = f(s1,...,5m) 1 g(t1,...,ta) = t,
if and only if:

1. f=g(andm=mn) ands; ] t; foralli=1,...,n, or
2. s 4 t;, for some j, 1 <j<n.

The embedding relation < is a well-quasi ordering of
the set 7(X U V) for finite ¥ [2, 28], that is, any infinite
sequence of terms t1, ta, ... with a finite number of operators
is self-embedding, i.e., there are numbers j, k with j < k and
t; < tx. In order to avoid an infinite sequence of “diverging”
calls, we compare each narrowing redex of the current goal
with the selected redexes in the ancestor goals. When the
compared calls are in the embedding relation, the derivation
is stopped. We consider here this nonembedding unfolding
rule (instantiated with the lazy calculus relation) Ué> to
control the expansion of the trees.

We define a PEY configuration as a sequence of terms
(t1,...,tn) € State<. Upon each iteration of the algorithm



in Definition 3.7, the current configuration q = (t1,...,tn)
is transformed in order to ‘cover’ the set T of terms which
result from the PE of q in R, that is:
T = terms(US, ({t1,...,ta}, R)).

This transformation is done using a specific abstraction op-
eration abstract™ [2]. Informally, this operator does the
following. Let T be the set of new terms introduced by the
unfolding. They are compared to those already generated
(recorded in q) and, if the new term is not larger than any
of the preceding ones, it is just appended to q. Otherwise,
if the new term s is an instance of some term t = so in
q, then the terms in o are recursively abstracted and intro-
duced in q; else the two terms are slightly generalized by
taking their most specific generalization [30]. The abstrac-

tion operator abstract< guarantees the global termination
of the algorithm and the closedness of the partially evaluated
program.

Our first example, the ‘double-append’, is a standard
test of elimination of intermediate data structures. It illus-
trates the fact that our method can eliminate intermediate
data structures and turn multiple-pass programs into one—
pass programs. This effect is also achieved by deforestation
[47], tupling [9] and positive supercompilation [42], among
others, while standard PE generally does not get this opti-
mization [44]. This example also shows that normalization
between narrowing steps can be used as a safe replacement
for some ad-hoc optimizations used in other methodologies
for program transformation. This normalization does not
risk looping, because by using a terminating subset of the
program rules for normalization, each single narrowing step
terminates and thus narrowing trees are built in finite time.
It does not lose completeness either, because alternative
clauses are discarded only if no solutions are lost.

Example 3 (double-append) Consider the well-known, ter-
minating, program app/2:

app(nil,ys) — s
app(x: Xs,ys) — x:app(xs,ys)
with initial query app(app(xs,ys),2s) = y. This goal ap-
pends three lists by appending the two first, yielding an
intermediate list, and then appending the last one to that.
We evaluate the goal by using normalizing lazy narrowing.
Starting with the sequence: q = app(app(xs,ys),2s), and
by using the procedure described in Definition 3.8, we com-
pute the trees depicted in Figure 3 for the sequence of terms:
q'" = app(app(Xs,¥s), Zs), apP(Xs,ys). Note that “app”
has been abbreviated to “a” in the picture. Then we get

the following residual program R’:

app(app(nil,ys),zs) — app(ys,zs)
app(app(x : Xs,¥s),%s) — X :app(app(Xs,ys),Zs)
app(nil,zs) — zs
app(y : ¥s,Zs) — Y :app(¥s,zs)

which is able to append the three lists by traversing its input
only once. Note that the key to success in this example is the
use of normalization. Without the simplification step, the
embedding ordering would have been satisfied too early in
the rightmost branch of the top tree of Figure 3. The driving
algorithm in [43] (the only version of positive supercompila-
tion guaranteeing termination) achieves the same effect by
means of an ad-hoc technique like the ‘transient reductions’
[43], which can incur the risk of nontermination, as opposed
to our method.

a(a(xs,¥s), 2s) ® y

{xs/nil}
a(x':a(x},ys),2s) Xy
x'": a(a(xs,ys),2s) Ry

{ys/nil} {vs/y' : ¥}

!

Zs XY y ra(ys,zs) Ry

Figure 1: Normalizing lazy narrowing trees for
a(a(xs,ys),2s) ® y and a(xs,ys) X y.

In [31], characteristic trees have been proposed as an al-
ternative to transient reductions which ensure termination.

We note that the normalization of goals implements a
strategy where we compute in a deterministic way as long as
possible, and it is thus comparable to Gallagher’s preference
for unfolding determinate goals [12, 43] in that it avoids the
creation of superfluous choice points for alternative rules but
it requires a sort of “looking-ahead” in the search trees.

Example 3 illustrates the fact that the resulting partially
evaluated program is not guaranteed to be CB, which may
prevent the lazy strategy from being able to narrow a goal
in the transformed, partially evaluated program. Example
3 also shows that the resulting set of (partially evaluated)
terms is not guaranteed to be independent. In our exam-
ple, PE uses the same function symbol for two different
specializations of a definition (namely, for the procedures
app(app(xs,¥s),2s) and app(Xs,¥s)). Some type of trans-
formation is required to guarantee that there is no interfer-
ence between the corresponding sets of rules, as would be
the case if the definition of ‘double-append’ were used to
narrow a nested call app(-, -) in a goal app(app(-,-), -)-

4.1 Post-Processing Renaming

In this section, we formalize a suitable renaming phase able
to guarantee that lazy narrowing can execute the goal in the
transformed program and that different specializations of a
function are not confused, while the (lazy) computed answer
semantics is preserved.

Definition 4.2 (independent renaming) Let S be a set
of terms. We define an independent renaming S’ of S as
follows:

S ={(s,sY|s€S AS =f(x1,...,%m)}

where {X1,...,Xm} are the distinct variables in s in the or-
der of their first occurrence, and the £%’s are new function
symbols, which are different from those in R and S.

The post-processing renaming can be formally defined as
follows.

Definition 4.3 (post-processing renaming) Let R be a
program and S a set of terms. Let R’ be a partial evaluation
of R w.r.t. S, and S’ an independent renaming of S. We
define the post-processing renaming R = ppreny (R’,S’)



of R' w.r.t. S' as follows: ppreny (R',S') =
Upsyesr it | (80 2 p<=C)eR, and
r = (s'§ = ren(p,S’) < ren(C,S"))}
where the nondeterministic function ren(o,S') is defined in-
ductively as follows: ren(o,S’) =

Roughly speaking, in Definition 4.3 we derive specialized
procedures for each term in S’, and perform fold on every
function call in R’ (replacing the original term by a call to
the newly defined function) using the corresponding renam-
ing in S’, to produce the new, renamed, filtered program
R"”. The idea behind this transformation is that, for any S-
closed query g, lazy narrowing computes the same answers
for g in R as for the goal which results from the renaming
of g (according to S') in R”. Note that the postunfolding
process terminates.

We now illustrate these definitions with an example.

Example 4 Consider again the double-append goal and pro-
gram app/2 of Example 8. An independent renaming S’ of
S is:
S"={ (app(xs,¥s),a1(Xs,¥s)),
(app(app(xs,ys), Zs), a2(Xs, ¥s, 2s)) }-
The post-processing renaming R” of R' w.r.t. S’ is:
ax(nil,ys,2:) —  ai(ys,2s)
ax(X:Xs,¥s,2Zs) — X:a(Xs,Ys,Zs)
ai(nilys) — s
a;(X:Xs,¥s) — x:ai1(Xs,¥s)

We note that, for a given set of terms S’ the filtered
form of a program may depend on the strategy which selects
the term from S’ which is used to rename a given term o
in S, since there may exist, in general, more than one s
in S’ that covers the call o. Hence, the specialized form
of a program is not unique. Some potential specialization
might be lost due to an inconvenient choice. The problem of
defining some plausible heuristics able to produce the better
potential specialization is still pending research.

Renaming ensures independence of the specialized pro-
cedures, as stated in the following.

Proposition 4.4 (independence) Let R be a weakly or-
thogonal, CB program, S be a finite set of terms, and g be
an S-closed goal. Let R' be a hnf-PE of R w.r.t. S such
that R’ is S-closed. Let S’ be an independent renaming of
S, R"” = ppreny. (R',S’) the renaming of R' w.r.t. ', and
g" =ren(g,S’) the renaming of the goal g w.r.t. S'. Then,

1. A={s"| (s,s") € S'} is independent,
2. R" is a left linear CB program, and
3. R"U{g"} is A-closed.

We now state the correctness of the partial evaluator
with the post-processing renaming.

(ren(e;,S’),...,ren(en, S’)
ifo=(e1,...,en)
ren(s,S’) ~ ren(t,S’)
ifo=(s~t)
{ x ifo=x€eV
c(ren(t1,S’),...,ren(tn,S"))
ifo=c(ty,...,tn), c€C, n>0
s'¢’ ifo=s0, (s,s') €S’ and
L 0’ = {(x/ren(x6,S")) | x € Dom(6)}.

Theorem 4.5 (strong soundness and completeness)

Let R be a weakly orthogonal, CB program, g a goal, and
S be a finite set of terms. Let R' be a hnf-PE of R w.r.t.
S such that R' U {g} is S-closed. Let S’ be an independent
renaming of S, R” be a renaming of R’ w.r.t. S, and g’ =
ren(g,S’). Then 0 is a computed answer substitution for g
in R iff 0 is a computed answer substitution for g’ in R”.

We finally illustrate the power of the call-by-name PE
procedure on the matching program match of [27]. This
example is discussed by [24, 43, 44], among others.

4.2 Pattern matching in strings

A standard example in the literature on PE is the derivation
of an efficient string matcher by PE of a (more or less) naive
pattern matcher w.r.t. a given pattern [15, 44]. The source
program R listed below checks whether a string pattern p
occurs within another string s by iteratively comparing p
with a prefix of s. In the case of a mismatch, the first el-
ement of the target string s is cut off and the process is
restarted with the tail of s. The strategy is not optimal be-
cause the same elements in the string may be tested several
times. The power of a transformation can be made evi-
dent by checking whether it automatically performs the op-
timization central to the Knuth-Morris-Pratt (KMP) string
matching algorithm which constructs a deterministic finite
automaton. The ‘KMP test’ is often used to compare the
strength of specializers. This example is particularly inter-
esting because it is a kind of transformation that neither
(conventional) PE nor deforestation can perform automati-
cally [44]. Partial deduction of logic programs and positive
supercompilation of functional programs can pass the test
[44]. Our method also performs satisfactorily on the prob-
lem, as the following example illustrates. We assume that
matching is on bit-strings, i.e. strings containing only zeroes
and ones. Note that this choice of a binary (or finite) alpha-
bet is sensible for an equational definition of the false value
for equalities, but it is not essential for the specialization,
since the algorithm does not rely on it and is not exploited
during the specialization process.

Example 5 Let R be the naive pattern matching program
(a) of Figure 2. Suppose that the fized pattern 001 is given
and we want to solve the pattern matching problem for the
subject string s. Applying the call-by-name evaluator to the
term match(001,s), and subsequently evaluatmg new terms
according to our method, gives the program R'* (Figure 2,
(b)). After the post-processing remaming transformation,
we obtain the specialized program R (Figure 2, (c)). The
amount of specialization obtained in this program is essen-
tially analogous to that of the rules produced by the algo-
rithm in [48]. The specialized algorithm acts like a KMP-
style pattern matcher. This gives the same advantages of the
KMP algorithm over the naive one in terms of complezity.
Namely, for each fized pattern p the specialized algorithm
makes much less comparisons, furthermore as p gets larger
the complezity of the naive algorithm becomes larger, while
for the specialized algorithm there exists an upper bound
which does not depend on p.

2For simplicity, we have omitted the rules that reduce functions to
false. We have used the simplification and eager variable elimination
[38] rules in order to get better specialization.



(a) Naive pattern matcher R:

match(p, s)

loop(nil, ss, op, os)
loop(p : pp, nil, op, os)
loop(p : pp, s : ss, op, 0s)
loop(p : pp,s : ss,op, 0s)
next(op, nil)

next(op, s : ss)

L4 llld

loop(p, s, p, s)

true

false

loop(pp,ss,op,0s) <p~s % continue
next(op,o0s) < (p ~ s) < false % shift string

false
loop(op, ss, op, ss)

% restart loop

(b) CBN PE R’ of match(001,s) in R:

match(001, s)
loop(001,0 : ss,001,0 : ss)
loop(001,s : ss,001,s : ss)

loop (01,0 : ss’, 001,00 : ss')
loop(01,s’ : ss',001,0: s’ : ss’)

loop(001, s,001, s)

loop(01, ss,001,0 : ss)

loop(001, ss, 001, ss) < (0 = s) = false
loop(1,ss’,001, 00 : ss’)

loop(001, ss’,001,s’ : ss’) < (0 = s’) ~ false

loop(1,1 :ss”,001,001 : ss”) true

loop(1,s” : ss”,001,00 : 8" : ss”)

Ll ld Ll ol

(c) Post-processing renaming R" of R':

loop(01,s” : ss”,001,0:s"” : ss") <= (1 = ") = false

match’(s) — loop_001(s)

loop_001(0 :ss) — loop_01(ss) loop_001(s : ss)
loop 01(0:ss) — loop_1(ss) loop_01(s : ss)
loop_1(1 : ss) — true loop_1(s : ss)

— loop_001(ss) <
— loop_001(ss) <
— loop_01(s: ss) < (

Figure 2: KMP example.

Let us conclude with an example that illustrates the fact
that, in some cases, a call-by-name partial evaluator can
derive more efficient residual programs than a call-by-value
partial evaluator and hence it can be worthwhile construct-
ing them, even for terminating programs. We note that
most of the actual partial evaluators are based on call-by-
value procedures.

Example 6 Consider the following program R = {g(x) —
0, £f(0) — 0, f(c(x)) — f(x)}. Let us consider a call-by-
value partial evaluation based on innermost narrowing [11].
If we evaluate the goal g(f(x)) =y in R using innermost
narrowing, we obtain the following renamed specialized pro-
gram RY = {g'(0) = 0, g'(c(x)) = g'(x)}. The partial
evaluator based on our lazy narrowing strategy produces the
following residual program R4 = {g'(x) — 0}, whose com-
plezity is O(1), whereas the complezity of RY is O(n) (where
n is the number of 0’s in the input argument).

5 Related Work

Early work on automatic specialization of functional pro-
grams includes Turchin’s supercompiler [45] and the positive
supercompiler [44]. Supercompilation is based on driving,
a unification-based (call-by-name) transformation technique
for a strict (call-by-value) functional language tailored for
supercompilation. The mechanism of driving covers the ac-
tivities of specializing and unfolding in PE. The positive su-
percompiler is a reformulation of Turchin’s supercompiler for
a simpler call-by-name language with tree-structured pat-
terns. In this language, all arguments of a function are input

parameters. Furthermore, there is only pattern-matching
for non-nested linear patterns. The formulation is generaliz-
able to less restrictive languages at the cost of more complex
driving algorithms. In our functional logic language, this is
not the case, since we allow for more powerful matching via
unification on all arguments, both in execution and during
specialization.

In positive supercompilation [15], local and global con-
trol are not (explicitly) distinguished as only one-step un-
folding is performed. A large evaluation structure is built
which comprises something similar to both the local narrow-
ing trees and the global configurations of [36]. Each call t
in the driving process graph produces a residual function.
The body of the definition of the new function is derived
from the descendants of t in the graph. As in Partial De-
duction, the body of each residual rule in our framework is
built from the final node of the derivation, which results in
a fewer number of rules [15].

The post-processing renaming we have introduced in this
paper can be seen as an extension of the post-processing re-
naming defined in [5] to the case of nested functions in ex-
pressions. For simple patterns, our post-unfolding renaming
essentially boils down to the simpler transformation of [5].

A more closely related approach can be found in [32],
where conjunctions of calls (atoms) can appear in the heads
of partially evaluated programs, which is somehow compa-
rable to nested function applications. As in our framework,
in [32] renaming is mandatory in order to derive an ex-
ecutable specialized program from the partially evaluated
one. There exist two main differences between our post-
processing renaming and the renaming function introduced



in [32]. First, their definition describes renaming functions
which can erase variables of the renamed calls. As noted in
[32], this approach can produce incorrect transformations.
A safe technique has been later introduced in [33]. The sec-
ond difference is in the renaming of clause bodies. As we
pointed out before, our renaming transformation is nonde-
terministic, and thus the function ren of Definition 4.3 can
produce different outcomes. Similarly, the renaming trans-
formation of [32] involves some nondeterminism concerning
the selection of conjunctions from the clause bodies to be
renamed. However, they introduce a partitioning function
in order to deterministically choose one of the possible re-
namings. This extension is also possible in our framework,
by simply adding a new parameter to the renaming function
ren to indicate how the specialized calls have been proved
S-closed, which might be used to guide the renaming pro-
cess.

6 Conclusions

The interest in combining the most important declarative
paradigms, namely functional and logic programming, has
grown over the last decade (see [18] for a survey). How-
ever, integrated functional logic languages are currently not
widely used. In order to develop useful and practical in-
tegrated languages, it is essential to succeed in shrinking
the efficiency gap with respect to imperative languages, as
is already being done for Prolog. To this goal, formally
based, practical tools for the analysis and transformation
of functional logic programs which are able to improve the
current implementations are a pressing need. Since func-
tional logic languages have been widely investigated from
the point of view of the semantics, it becomes of natural
concern to study formal manipulation techniques based on
the semantics, which are able to improve program perfor-
mances without changing the computational meaning.

PE is a semantics-preserving program transformation
based on unfolding and specializing procedures. In this pa-
per we have considered the case of (normalizing) lazy nar-
rowing, which has been shown to be a reasonable improve-
ment over pure logic SLD resolution strategy [17]. The main
innovations in our work are: 1) our procedure applies to
(lazy) functional logic languages such as Babel whose (lazy
narrowing) operational semantics corresponds to SLD reso-
lution but with the additional feature of exploiting determin-
ism by the ‘dynamic cut’ [18], and 2) we present a renaming
transformation for guaranteeing: (a) the independence of
the set of partially evaluated terms, (b) that the partially
evaluated program does not lose some of the basic require-
ments for the completeness of lazy narrowing and (c) the
equivalence of the computed answer substitution semantics
of the original and the partially evaluated programs for the
intended queries.

‘We note that our post-processing transformation is nec-
essary also for some non-lazy strategies, such as innermost
narrowing, and the extension results straightforward [1].

As future work we mention the investigation of the appli-
cation of our framework to optimal versions of lazy narrow-
ing strategies, such as needed narrowing [4] (and its exten-
sion to a higher order framework) which has been proposed
as the basic operational principle of Curry [20], a language
which is intended to become a standard in this area.
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