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1 Introduction

Functional logic programming [8] allows us to integrate some of the best features
of the classical declarative paradigms, namely functional and logic programming.
The operational semantics of functional logic languages is usually based on nar-
rowing, an evaluation mechanism which combines the reduction principle of func-
tional languages and the resolution principle of logic languages. Lazy evaluation
is a valuable feature of functional (logic) programming languages since it avoids
unnecessary computations and allows us to deal with infinite data structures.
Recently, Antoy et al. [4] introduced a lazy evaluation strategy for functional
logic programs, called needed narrowing, which generalizes Huet and Lévy’s [11]
call by need reduction to deal with logical variables and unification in inductively
sequential rewrite systems, where functions are defined in a way which is similar
to case expressions.

This paper investigates and clarifies the formal relation between needed nar-
rowing and the (not so lazy) demand-driven narrowing strategy of [18]. We
demonstrate the following results:

1. Needed narrowing and (demand-driven) lazy narrowing are computationally
equivalent on a subclass of inductively sequential programs: the uniform
programs of [12,13], i.e., both strategies compute the same answers and
values over this class of programs.

2. This is the broadest class of programs where such an equivalence has been
proven. However, (demand-driven) lazy narrowing may still perform some
redundant computations which produce several copies of the same value and
answer.

3. Therefore, we introduce a complete refinement of (demand-driven) lazy nar-
rowing: uniform lazy narrowing, which is equivalent to needed narrowing on
uniform programs and does not perform redundant computations. This im-
plies that uniform lazy narrowing enjoys the optimal properties of needed
narrowing.

This paper is organized as follows: After recalling in Section 2 some basic no-
tions, in Section 3 we characterize the class of uniform programs. Section 4
investigates the precise relation between the needed narrowing and demand-
driven lazy narrowing strategies. In Section 5, we present an optimization of the
demand—driven narrowing strategy and we prove the correctness of the proposed
refinement. Section 6 concludes.



2 Preliminaries

We assume familiarity with basic notions of term rewriting [6] and functional
logic programming [8]. Throughout this paper, X denotes a countably infinite set
of variables and F denotes a set of function symbols (also called the signature),
each of which has a fixed associated arity. We often write f/n € F to denote that
f is a function symbol of arity n. 7 (F,X) denotes the set of terms built from
F and X. T(F) denotes the set of ground terms. If t ¢ X, then Root(t) is the
function symbol heading the term ¢, also called the root symbol of t. We write o,,
for the sequence of objects o1,...,0n. A linear term does not contain multiple
occurrences of the same variable. Var (o) is the set of variables occurring in the
syntactic object o.

A substitution o is a mapping from X to 7(F,X) such that its domain
Dom(o) = {x € X | o(z) # x} is finite. We denote the identity substitution by
id. We use the overloaded symbol “<” to denote the usual preorder on substitu-
tions, i.e., 0 < 0 iff 3y. yoo = 6. The restriction oy of a substitution o to a set
V of variables is defined by oy (z) = o(x) if v € V and oy (z) =z if 2 ¢ V. A
unifier of two terms s and ¢ is a substitution o such that o(s) = o(t). A unifier
o is called the most general unifier (mgu) if o < 0 for all other unifier . We
say that term s is more general than term ¢ (in symbols, s < t) iff 3o such that
o(s) =t.

Positions of a term t are represented by sequences of positive numbers. We
let A denote the empty sequence, and p.w denote the concatenation of sequences
p and w. They are ordered by the prefir ordering “<”: p < ¢ iff Jw. p.w = q.
Pos(t) and FPos(t) denote, respectively, the set of positions and the set of
nonvariable positions of the term ¢. The subterm of ¢ at position p is denoted by
t|, and the result of replacing ¢|, with a term s is denoted by ¢[s],.

2.1 Programs

In this section, we introduce a functional logic language which can be thought
of as a “common core” for some popular lazy functional logic languages such as
Babel [18], Curry [10], and Toy [15].

A rewrite rule is an ordered pair I — r such that I,r € T(F,X), 1l € X,
and Var(r) € Var(l). Terms [ and r are called the left-hand side (lhs) and the
right-hand side (rhs) of the rule, respectively. A term rewriting system (TRS),
is a pair (F,R) where F is a signature and R is a set of rewrite rules. Given
a TRS (F,R), we assume that the signature F is partitioned into two disjoint
sets F = CW D where D = {Root(l) | (Il — r) € R} and C = F \ D. Symbols
in C are called constructors and symbols in D are called defined functions or
operations. T (C,X) denotes the set of constructor terms. A pattern is a term
of the form f(d,) where f/n € D and d,, are constructor terms. For simplicity,
we often identify a TRS with the set of rewrite rules R. We say that a TRS
is constructor-based (CB) if the lhs’s of R are patterns. We say that a TRS
is orthogonal if it is left-linear and non—-ambiguous [6]. In this work, TRSs are
called programs.



A rewrite step is an application of a rewrite rule to a term, i.e., t —, r s (or
just t — s) if there exists a position p € FPos(t), a rewrite rule R = (I — )
and a substitution o with ¢|, = o(l) and s = t[o(r)],. We denote by —7 the
transitive closure of —, and by —* the transitive and reflexive closure of —. We
say that a term ¢ is a head normal form (hnf) if ¢ is a variable or Root(t) € C.

The equality predicate = is defined, as in functional languages, as the strict
equality on terms (note that we do not require terminating rewrite systems and
thus reflexivity is not desired), i.e., the equation t; & ty is satisfied if ¢; and
to are reducible to the same ground constructor term (i.e., 3d € 7(C) such
that t; —* d *«ts). Equations can also be interpreted as terms by defining the
symbol ~ as a binary operation symbol.

2.2 Lazy Narrowing Strategies

The operational principle of functional logic languages with a complete semantics
is called narrowing [8]. Narrowing was originally proposed as a method to solve
equations. A solution of an equation s & t is a substitution o such that o(s & t)
can be reduced to true.

The narrowing relation is nondeterministic and it can produce a huge search
space. Hence, several narrowing strategies which are able to remove some useless
derivations have been proposed.

Definition 1 (Narrowing Strategy).

A narrowing strategy is a mapping ¢ which, given a term t, computes a set of
triples (p, R,0), where p € FPos(t), R = (I — r) is a (standardized apart)
program rule and o is a unifier of t|, and I.!

[p,R,0]

We say that t <> t' is a narrowing step using the strategy ¢ if (p, R, o) € ¢(t)
’ s [p1,R1,01] [p2,R2,02]
and o(t) —p r t'. Analogously, we say that a derivation to ~ ~>g "t =~

[Pn; R 0n] . . .
SRty s a p-derivation (denoted by o ’\gw* tn, where 0 = 0,,00,_1...0

o1), if each narrowing step in the derivation uses ¢. We are mainly interested in
those derivations leading to a value (a constructor term). A narrowing derivation
t f\g@* s is successful iff s € T(CUX), where s is the computed value and o is the
computed answer. The pair “value/answer” computed in a narrowing derivation
is often called output.

An important property of a narrowing strategy ¢ is completeness: for each
solution to a given (equational) goal, a more general answer is still found by
narrowing using .

Lazy Narrowing. In the following, we specify our (demand driven) lazy nar-
rowing (LN) strategy in the style of [18]. Lazy narrowing reduces expressions at

! In most narrowing strategies, o is required to be a most general unifier of the two
terms ! and t|,. This is not the case of needed narrowing, which may compute
substitutions which are not most general.



outermost narrowable positions. Narrowing at inner positions is performed only
if it is demanded by the lhs of some rule. Our formalization of LN first appeared
in [1], where it was defined for conditional (CB and weakly orthogonal) TRSs.
The formalization of LN uses a particular kind of unification algorithm [18] which
takes advantage of the pattern discipline and the left-linearity of program rules.
In particular, we use the function LU (Linear Unification) to compute the unifi-
cation between a linear pattern and an arbitrary term. In contrast to standard
unification algorithms, LU considers the case when there is a mismatch between
a defined function symbol f and a constructor symbol ¢ as a demand of further
evaluation of f. Therefore, LU can either succeed (with outcome Success), fail
(Fail) or suspend (Demand); when it suspends, it returns the set P of positions
which “demand” further evaluation of their arguments. A formal definition of
LU can be found in [1].

Now we define the LN strategy. We assume that the rules of R are numbered
as Rq,...,Rp,.

Definition 2 (Lazy Narrowing Strategy).

We define the lazy narrowing strategy as a set-valued function X\iq., which, given
a term t, computes the set of triples (p, Ry, o), where p € FPos(t) is a position
of term t (called “lazy” position), Ry = (I — ri) s a (renamed apart) rule of
R, and o is a substitution, as follows:

Alazy(t) = ZL:l )‘/(th7Rk)

where X (t,p, Rp) = if Root(l;) = Root(t|,) then
case LU(ly,t),) of
(Success, o) : {(p, Ri,0)}
(Fail,0): 0
(Demand, P) : J,cp Uiy N(t,p.q, Ry)
0

else

For CB orthogonal programs, LN is (strongly) complete w.r.t. strict equations
and constructor substitutions as solutions [16,18]. Here, strong completeness
means that, given a conjunction ¢; At A ... At,, we can nondeterministically
select for evaluation just one of the conjuncts, ¢;, without losing completeness.?
It is well-known that LN does not define a pure lazy evaluation strategy in the
sense that it might demand the evaluation of expressions which are not really
needed to compute the outcome [4].

Needed Narrowing. Here, we recall the main notions concerning the needed
narrowing strategy of [4]. Needed Narrowing (NN) reduces the outermost needed
positions of the input term which are unavoidable to compute the final result. NN
is defined on inductively sequential programs, a (strict) subset of CB orthogonal
programs. The definition of this class of programs, as well as the NN strategy,
make use of the notion of a definitional tree, first introduced in [2]. From a

2 Note that, in our context, each ¢; is a Boolean expression, in particular an equation.



declarative point of view, a partial definitional tree P can be seen as a set of linear
patterns partially ordered by the strict subsumption order “<” [3]. pattern(P)
denotes the minimum element of P. Given a defined function f/n, we call P
a definitional tree of f if P is a partial definitional tree, pattern(P) = f(z,),
where T,, are distinct variables and the leaves of P are all and only variants of
the left-hand sides of the rules defining f. Note that there can be more than one
definitional tree for a defined function.

Definition 3 (Inductively Sequential Program).

A defined function f is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions are
inductively sequential.

Needed narrowing can be formulated as follows?.

Definition 4 (Needed Narrowing Strategy).

Let R be an inductively sequential program. Let t be an operation-rooted term,
and P a partial definitional tree with pattern(P) = 7w such that # < t. We
define an application \ from terms and partial definitional trees to sets of triples
(position, rule, substitution) as the least set satisfying the following properties.
We consider two cases for P:

1. If 7 is a leaf, i.e., P ={nx}, and (1 > 1) € R, \(t,P) = {{A, 7 — r,id)}.

2. If m is a branch, consider the inductive position o of ® and a child m; =
mlei(Tn)]o € P. Let Py = {n’ € P | m < 7'} be the partial definitional tree
where all patterns are instances of m;. We consider the following cases for
the subterm t|,:

(p,R,o07) if tlp = 2 € X, 7 = {z/ci(Tx)}, and (p,R,0) €
)‘(T(t)api);_
)\(t773) > <p7 R,O' OZd> if t|0 = Cl(tn) and (p7 R7 0) € >\(t7 Pz),
(o.p, R, 0id) if t|o = f(tn), f € F and (p, R, 0) € A(t|o, P’') where
P’ is a definitional tree for f.

Note that each NN step can be represented as (p, R, ¥ o---od1), which is called
the canonical representation of a NN step. We assume that the definitional trees
always contain fresh variables when they are used in a narrowing step. By abuse,
we call “needed narrowing position” to the position p of a needed redex.

This mechanism differs from the needed reduction of lazy functional languages
only in the instantiation of free variables by means of unifiers. The unifiers
computed in NN steps may contain extra bindings which would eventually be
performed later in (demand-driven) LN narrowing derivations. We refer to them
as anticipated substitutions. Roughly speaking, an anticipated substitution is
the part of a substitution computed in a NN step which is not computed in a
“corresponding” LN step (using the same rule at the same position).

3 This definition slightly differs from the one appeared in [4], although it computes the
same needed narrowing steps if we consider substitutions modulo variable renaming
and restricted to Var(t). In the sequel we always assume this restriction when we
compare needed narrowing and lazy narrowing.



Definition 5 (Anticipated Substitution).

Let R be an inductively sequential program and R a rule of R. Let t be a term
rooted by f € F, and P be a definitional tree of f. Let (p,R,0) € A(t,P) and
(p, R, 0) € Nazy(t) (if they exist). We say that T is the anticipated substitution
part of 0 computed by A if 0 =ocoT.

It is noteworthy that the concept of “anticipated substitution”, as informally
defined in [4], does not correspond with the more declarative notion above in-
troduced. Technically, the “anticipated substitutions” of [4] are made of those
bindings computed by traversing definitional trees which do not correspond to
the function which is actually reduced. This notion of “anticipation” has an op-
erational flavor and as we are going to show in Section 4.1, for some cases, it may
compute additional bindings that can not be considered as “anticipated” when
we use Definition 5. Therefore, in order to distinguish between both concepts,
we prefer to name the “anticipated substitutions” of [4] as anticipated bindings.
A formal definition of this concept is given in Definition 7, which revels to be a
valuable tool to prove several results presented in this paper.

Antoy et al. [4] proved that, for inductively sequential programs, NN is com-
plete w.r.t. strict equations and constructor substitutions as solutions. Moreover,
NN is optimal w.r.t. the independence of computed solutions and the length of
successful derivations (in graph-based implementations).

3 Uniform Programs

Uniform programs were introduced in [12,13] to improve the implementation of
lazy narrowing within the functional logic language Babel [18].

Definition 6 (Uniform Program).
A uniform program is a set of rewrite rules such that the following conditions
hold:

1. Flat constructor patterns: the arguments of the lhs’s of the rules are either
variables or linear constructor terms of the form c(Zy).

2. Orthogonality.

3. Uniformity: Let f(t,) and f(5,) be the lhs’s of two rules defining f; then, t;
is a variable iff s; is a variable, for all i € {1,...,n}.

In uniform programs, functions f/n are defined by:
(i) one or more rules whose lhs has the shape:

f("'7Ck1(m)a-~-ackp(ymkp)"")

where {k1,...,kp} C{1,...,n} are fixed positions (called inductive positions of
f) addressing flat constructor terms and the remaining positions contain only
variable arguments, or

(ii) one single rule whose shape is f(Z,) — r.

In the former case, for every pair of (distinct) program rules, there exist at



least an inductive position of the lhs’s of these rules where the corresponding
arguments are rooted by two different constructors.

4

Ezxample 1. The following program® is uniform

f(X717273)_)1a f(Xa2>273)_>27 f(X727272)_>3

In [19], simple uniform programs (i.e., uniform programs whose rules have—at
most—one inductive position) were introduced and, as an easy consequence of
Lemma 2 in [19], the equivalence between NN and LN over this class of programs
holds for derivations leading to a hnf.

Implementation Problems and Properties Moreno et al. showed in [17]
that, inside a sequential implementation of narrowing, using a deep-first search
with backtracking, it is difficult to combine the lazy evaluation strategy with
the use of logical variables. Uniform programs were introduced to avoid this
drawback. Unfortunately, even if uniform programs have many advantages [12],
they do not always suffice to get rid of useless computations (see Example 4).

Proposition 1. Uniform TRSs are inductively sequential.

The structure of the proof is very simple: Given a uniform program R, it suffices
to consider that, for each defined function f of R, we can construct an associated
definitional tree by using as inductive positions to build the tree the inductive
positions of the function symbol (i.e., the nonvariable positions of the lhs’s of
the rules defining the function f).

We have that simple uniform programs C uniform programs C inductively se-
quential programs C CB orthogonal programs.

It is worthwhile to note that, for uniform programs, it is possible to build the
associated definitional tree by considering the set of inductive positions of the
function in any possible order. This does not generally hold for (non-uniform)
inductively sequential programs. In the following, we call standard definitional
tree of a function f the tree in which the inductive positions of f are considered
from left to right.

4 Equivalence of Lazy Evaluation Strategies

In this section, we establish the precise relation between the needed narrowing
strategy of [4] and the (demand-driven) lazy narrowing strategy of [1], first for
single steps and then for successful derivations.

4.1 Stepwise Equivalence

To motivate our discussion, let us begin with an example which shows that, even
for uniform programs, there is not a direct, one-to—one correspondence between
LN and NN steps.

4 We use capital letters to denote variables in examples.



Ezxample 2. Consider the uniform program:
Ry: f(a,b) —e¢, Ra: g(c)—b.

where a, b and ¢ are constructor symbols. Using standard definitional trees for
f and g, there exists the following NN derivation:

[27R27{,\)i/(1,Y/C}] [A,Ry,id]

f(X7g(Y)) NN f(a,b) ~yn €

whereas the corresponding derivation using LN is:
2,Rs,{Y/c ARy, {X
£ g )P pf M

Note that, in the NN derivation, the binding X/a is computed in the first step,
whereas it is computed in the second step in the corresponding LN derivation.

We formalize the precise correspondence between LN and NN steps in Proposi-
tion 2. First, we need to prove some preparatory results.

The following lemma establishes that NN does not compute anticipated sub-
stitutions when the NN step is performed at the root position of the term.

Lemma 1. Let R be a uniform program and R € R a program rule. Let t be an
operation-term and P be a definitional tree for the root of t. Then, (A, R,o) €
A, P) iff (A, R,0) € Nazy(l).

As we mentioned before, the ability to anticipate some bindings in the NN strat-
egy is the key to avoid some unnecessary computations: if the evaluation of a
subterm ¢|, is demanded by some program rule, after the evaluation of this sub-
term (to a hnf), only the rules which actually demanded the evaluation of t|,
can be applied. Indeed, thanks to the anticipated substitutions, only strongly
sequential redexes are reduced in needed narrowing derivations [4]. The compu-
tation of anticipated substitutions makes the difference between the LN and NN
strategies. However, in order to state and prove the precise relation between LN
and NN computation steps for arbitrary input terms, we need a more opera-
tional and technical notion of “anticipation”, which we formulate by mimicking
the definition of a NN step, called anticipated bindings. Both notions do coincide
for linear terms but they may differ for non-linear terms.

Definition 7 (Anticipated Bindings).
Let R be a program, t be an operation-rooted term, and P be a partial definitional
tree such that pattern(P) = w and © < t. We define the set of anticipated
bindings «(t,P) in \(t,P) as a mapping from terms and partial definitional
trees to sets of substitutions as follows:

1. If 7 is aleaf, a(t,P) = {id}.

2. If 7 is a branch,



Tor iftlo=z€ X, T={x/ci(Tn)}, (A, R,0) € X\(7(t),P;), for
some rule R and substitution o, and 7’ € a(7(t), P;);

7' oid if t|lo = ci(tn), (A, R,0) & A(t,P;), for some rule R and
substitution o, and 7' € a(t, P;);

atPI3 N\ 0id if (A Ra) & ALP), th = 9(f), g € F, (A R0) &
A(t|o,P’), for some rule R and substitution o, and 7' €
a(tlo, P") with P’ a definitional tree of g.
id otherwise
where o is the inductive position of w, m; = w[ci(x1,...,2n)]o € P is a child

of m, and P; = {r’ € P | m; < 7'} is a proper subtree of P.

The following examples illustrate the difference between this definition and
the notion of anticipated substitution.
Ezxample 3. Consider the uniform program:

Ri: f(a,b) = ¢ Ra: f(a,e)—b Rsz: gla)—c Ry: g(c)—b
and the standard definitional trees P and P’ for f and g, respectively.

— Consider the term ¢(Z). Then, pattern(P’) is a branch and the fourth case
of Definition 7(2) holds, since

Ag(a),P1) ={{4, Rs,id)} and  A(g(c), P3) = {{4, Ra,id)}.

Therefore, a(g(Z),P’) = {id}, which does coincide with the anticipated
substitution.

— Given the term f(X, f(Y, g(Z))), we have that

(2.2, Ry,ido{Z/c} oido{Y/a} oido {X/a}) € N(f(X, f(Y,9(2))),P)
and (A, Ry,ido{Z/c}) € A(f(a, f(a,g(Z)))|2.2, P"). Hence, Definition 7 com-
putes the anticipated bindings: id o {Y/a} o id o {X/a} = {Y/a,X/a} €
alf(X, f(Y,9(2))),P), which also agree with the anticipated substitution.
Roughly speaking, for the above term, the substitution computed by « con-
sists of the bindings computed by A\ before the demanded position 2.2 is
considered and, hence, before the “non—anticipated” bindings ido {Z/c} are
computed by the call to A(f(a, f(a,9(Z)))|2.2,P’). Note that, the compu-
tation of the mapping « stops returning the binding id and disregarding
the “non—anticipated” part, when the subterm ¢(Z) of f(a, f(a,g(Z))) at
position 2.2 is reached.

— Finally, consider the non-linear term f(Z, f(Y, g(Z))). Then,
idoido{Y/a}oido{Z/a} ={Y/a,Z/a} € a(f(Z, f(Y,9(Z))),P)
Moreover, it holds that
(2.2,R3,idoidoido{Y/a}oido{Z/a}) € AN(f(Z, f(Y,9(Z))),P)

but (2.2, R3,{Z/a}) € Nazy(f(Z, f(Y,9(Z)))). This means that the map-
ping « computes an anticipated binding Z/a which does not belong to the
corresponding “anticipated substitution” associated to this step.



The following proposition establishes the precise relation between LN and NN
steps: given a NN step from ¢ which computes the substitution o o7, where 7 are
the bindings anticipated in this step, there exists a corresponding LN step from
7(t) which computes the substitution o by reducing the same position using the
same program rule (and vice versa).

Proposition 2. Let R be a uniform program and R € R a program rule. Let t
be an operation-rooted term. Then, (p, R,0) € Nazy(7(t)) iff there exists some
definitional tree P for Root(t) such that (p, R,c0o7) € \(t,P), where T € a(t, P)
are the anticipated bindings in \(t,P).

As a corollary, we obtain the following result, which holds for each single narrow-

. R,o0 . . .
ing step. A NN step ¢ e Sy ;] s can be proved iff there exists a corresponding

LN step 7(¢) [p«’ljfllv s, where 7 € a(t,P) are the bindings anticipated in the

computation A(t, P).

Note that Proposition 2 holds for an arbitrarily fixed definitional tree; this
amounts to say that, for each LN step, there is an appropriate definitional tree
such that the corresponding NN step can be proven.

To finish this subsection, let us mention a stronger equivalence, step by step,
between NN and LN steps over simple uniform programs. This is an easy conse-
quence of Proposition 2, and establishes that, for simple uniform programs, NN
does not produce anticipated bindings.

Corollary 1. Let R be a simple uniform program. Let t be an operation-rooted
term and P be the definitional tree for Root(t). Then, A,y (t) = A(t, P).

It is interesting to note that Corollary 1 is stronger than Lemma 2 in [19], which
only entails the equivalence for derivations leading to a hnf while our results
demonstrate the equivalence, step by step, between the NN and LN strategies
over simple uniform programs (and thus the equivalence of derivations leading
to arbitrary terms). Moreover, our result guarantees that these derivations use
the same rules over the same positions at each computation step.

5 Uniform Lazy Narrowing

Proposition 2 shows that every lazy position of a term (w.r.t. a uniform program)
is computed by A, hence it is needed. Since all needed positions must be exploited
in order to compute the final outcome and, according to the completeness results
for needed narrowing, the order in which needed positions are considered is
not relevant, it turns out that, for uniform programs, an optimization of LN is
possible by a don’t care selection among the demanded positions of the input
term. This is similar to the uniform narrowing strategies introduced in [7] for
canonical TRSs, which narrow only one position of the considered term while still
preserving completeness. This kind of strategies has inspired us to use the name
Uniform Lazy Narrowing (ULN) for the optimization of the LN strategy which
we formalize as follows. Again, we assume that the rules of R are numbered as
Ry,...,Rn.

10



Definition 8 (Uniform LN Strategy).
Let R be a uniform program. We define the uniform lazy narrowing strategy as
a set-valued function:

)‘ulazy (t) = U;cnzl )\{u, (t7 A7 Rk)
where A, (t,p, Ri) = if Root(ly) = Root(t|,) then

case LU((lg,t|p))of
(Success, o) : {{p, Ri,0)}
(Fail,0): 0
(Demand, P) : (Jj—; A, (t,p.q, Ri)
with g = select_don't_care(P)
else ()

where the function select_don’t_care(S) arbitrarily chooses one element of the
set S.

Note that the ULN strategy only selects one redex position p in a term (although
several triples (p, R, o) can be associated to that position p). Informally, the
above strategy allows us to overcome the loss of efficiency of (unoptimized)
LN strategies (w.r.t. NN) which is due to the “don’t-know” nondeterministic
choice of all demanded positions in a LN reduction, in contrast to the more
effective “don’t-care” choice of the particular definitional tree for f in NN steps.
In ULN computations, note that one can fix any selection strategy, e.g., a left-to-
right (Prolog like) selection of demanded positions, just in the same way needed
narrowing fixes one of the possible definitional trees for computing. The following
example illustrates how our ULN strategy takes advantage of this property to
disregard some useless “redundant” LN derivations.

Ezample 4. Given the program
Ry : f(aaa)H(L Rs: g(a)*)a'
and the term ¢ = f(g(X),g(Y)), if we use the standard definitional tree for f,

the NN strategy computes only one (successful) derivation:

Flg(X), g )N f(a, g(v))

2,R2,{Y/a
2L fla,a)
[A,Ry ,id]

NN 0

However, the LN strategy produces a search tree with two branches where the
leftmost branch “matches” the former NN derivation and the rightmost branch
can be considered a “redundant” LN derivation. On the other hand, if we fix
a different definitional tree for f, which first considers the inductive position 2,
then the NN strategy only computes the rightmost LN derivation:

F(g(x), ()P f((X), )

1,R2,{X/a
a0 g
[A, Ry ,id]

NN 0.

Now the leftmost branch represents the “redundant” LN derivation.

11



5.1 Equivalence of Derivations

Now, we are ready to state and prove the relation between general LN and NN
derivations over uniform programs. Although we restrict the discussion to the
ULN strategy, most of our results can be easily extended to rough LN.

The following example reveals that, even for uniform programs, NN and ULN
do not compute the same values and answers for arbitrarily fixed definitional
trees, unless we require the evaluation to reach a head normal form.

Ezxample 5. Given the uniform program
Ri: f(a,b) = b,  Ry: g(c(Y))—Y, Rs: h(b)—b.

and the term f(g(X),h(Z)), there exists only one ULN derivation for this term
(selecting the subset of triples associated to the leftmost lazy position), which
outcomes the result (f(Y,b),{Z/b, X/c(Y)}):

(1,R2,{X/c(Y)}] (2,R5,{Z/b}]
f(g(X),n(2)) ~ULN fY,h(2)) “fs”ULN f(Y,b)

However, by considering standard definitional trees for f, g and h, we have the
NN derivation:
(1,R2,{X/c(Y2)}]
e

f(9(X),h(Z)) wx o f(Ya, h(Z)) f(a,b)
which computes the term f(a,b) and substitution {Z/b, X/c(a)}. Now, if a sub-
sequent narrowing step (reaching a hnf) is performed, both derivations end with
the same values and answers (up to renaming). It is important to note that
there exists an additional, redundant LN derivation, whose first step uses rule
R3 and whose second step uses rule Ry. This derivation is cut when we choose
the select_don't_care function to be a left-to-right selection function.

[2,R3,{Z/b}o{Y2/a}]
NN

The following theorem establishes that each NN derivation to a head normal
form can be mimicked by ULN and vice versa.

Theorem 1. Let R be a uniform program and t an operation-rooted term. Then,

1. there exists a NN derivation D = (t ~yx*5), where s is a hnf, iff there
exists a corresponding ULN derivation D' = (t ~(ox" 8);

2. D and D' have the same length, and they use the same rules over the same
positions on the corresponding steps.

The following result is a direct consequence of Theorem 1.

Corollary 2. Let R be a uniform program and e be an equation. There exists a
NN derivation e ~yx* true iff there exists the ULN derivation e ~oon™ true.
5.2 Correctness of Uniform Lazy Narrowing

Corollary 2 together with the soundness and completeness of NN entail the
correctness of ULN w.r.t. the strict equality and constructor substitutions as
solutions in uniform programs.
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Theorem 2. Let R be a uniform program and e be an equation.

1. (Soundness) ifengN* true is a ULN derivation, then o is a solution for
e.

2. (Completeness) For each constructor substitution o which is a solution of e,

there exists a ULN derivation e~ x* true with o' < o [Var(e)].

It is important to note that Theorem 2 demonstrates that ULN is strongly
complete (i.e., all lazy positions which may occur inside a term but one can be
disregarded without jeopardizing completeness).

6 Conclusions

This paper investigates the precise relation between the needed narrowing strat-
egy of [4] and the (demand-driven) lazy narrowing strategy of [1]. The original
contributions are:

— Uniform programs are a subclass of the inductively sequential programs
(Proposition 1).

— For uniform programs, a precise relation between needed narrowing and lazy
narrowing derivations (and steps) has been established in terms of “antici-
pated bindings” (Proposition 2).

— For uniform programs, an optimized lazy evaluation strategy, called uniform
lazy narrowing, has been formulated, which is still complete and strongly
equivalent to needed narrowing on the class of uniform programs (Theo-
rem 1).

These results offer the first proof that (uniform) lazy narrowing enjoys the opti-
mality properties of needed narrowing over the class of uniform programs.

Recent implementations of functional logic languages [5, 15] which are based
on definitional trees first transform inductively sequential programs into (a Pro-
log representation of simple) uniform programs, and then apply a demand-driven
strategy codified in Prolog. This is the technique most commonly proposed to
compute NN steps in inductively sequential systems even if the correspondence
w.r.t. the original NN computation model was never formalized nor claimed [4].
Our results in this paper demonstrate that, by first using a semantics preserving
transformation from inductively sequential programs into uniform programs [12,
19], and then using the uniform lazy narrowing strategy to execute the result-
ing uniform program, we get the same successful derivations as by running the
original inductively sequential program by needed narrowing. Since there exist
several implementations of functional logic languages which are based on a sim-
ilar transformation model [9,12, 14, 15, 18], the results in this paper can be seen
as a formal demonstration that current NN implementations fit the intended
(needed narrowing) semantics of the languages.
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