Termination of Narrowing in Left-Linear Constructor Systems

Germán Vidal
 Technical University of Valencia, Spain

(Joint work with Naoki Nishida University of Nagoya, Japan)

Máster en Tecnologías Informáticas Avanzadas

May 20, 2008
Albacete, Spain

Outline

(1) introduction

- narrowing
(2) termination of narrowing via termination of rewriting
- data generators
- main result
(3) automating the termination analysis
- abstract terms and argument filterings
- a direct approach to termination analysis
- a transformational approach
(4) the technique in practice
- the termination tool TNT
- inference of safe argument filterings
- some refinements
(5) related work
(6) conclusions

What is narrowing?

Standard definition of addition (TRS)
$\operatorname{add}(z, y) \rightarrow y$
$\operatorname{add}(\mathrm{s}(x), y) \rightarrow \mathrm{s}(\operatorname{add}(x, y))$

With rewriting: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \rightarrow_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \rightarrow_{R_{1}} \mathrm{~s}(\mathrm{z})$
With narrowing: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \leadsto R_{2} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \leadsto R_{1} \mathrm{~s}(\mathrm{z})$
but also: $\operatorname{add}(x, z) \quad s(\operatorname{add}(y, z))$

$$
\operatorname{add}(s(y), z)
$$

(many other non-deterministic reductions possible. ..)

What is narrowing?

Standard definition of addition (TRS)

$$
\begin{aligned}
\operatorname{add}(\mathrm{z}, y) & \rightarrow y \\
\operatorname{add}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{add}(x, y))
\end{aligned}
$$

With rewriting: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \rightarrow_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \rightarrow_{R_{1}} \mathrm{~s}(\mathrm{z})$
With narrowing: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \sim_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \sim_{R_{1}} \mathrm{~s}(\mathrm{z})$
but also:

(many other non-deterministic reductions possible.

What is narrowing?

Standard definition of addition (TRS)

$$
\begin{aligned}
\operatorname{add}(\mathrm{z}, y) & \rightarrow y \\
\operatorname{add}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{add}(x, y))
\end{aligned}
$$

With rewriting: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \rightarrow_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \rightarrow_{R_{1}} \mathrm{~s}(\mathrm{z})$
With narrowing: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \sim_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \sim_{R_{1}} \mathrm{~s}(\mathrm{z})$
but also: $\operatorname{add}(x, z)$
$\mathrm{s}(\operatorname{add}(y, z))$
$\mathrm{s}(\mathrm{z})$

(many other non-deterministic reductions possible...)

What is narrowing?

Standard definition of addition (TRS)

$$
\begin{aligned}
\operatorname{add}(\mathrm{z}, y) & \rightarrow y \\
\operatorname{add}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{add}(x, y))
\end{aligned}
$$

With rewriting: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \rightarrow_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \rightarrow_{R_{1}} \mathrm{~s}(\mathrm{z})$
With narrowing: $\operatorname{add}(\mathrm{s}(\mathrm{z}), \mathrm{z}) \sim_{R_{2}} \mathrm{~s}(\operatorname{add}(\mathrm{z}, \mathrm{z})) \sim_{R_{1}} \mathrm{~s}(\mathrm{z})$
but also: $\operatorname{add}(x, z) \quad \sim_{R_{2},\{x \mapsto s(y)\}} \mathrm{s}(\operatorname{add}(y, z)) \quad \leadsto\left\{R_{1}, y \mapsto z\right\} \quad \mathrm{s}(z)$

(many other non-deterministic reductions possible...)

Formal definition

Definition (rewriting)

$$
s \rightarrow_{p, R} s[r \sigma]_{p} \text { if there are }\left\{\begin{array}{l}
0 \text { a position } p \text { of } s \\
0 \text { a rule } R=(I \rightarrow r) \text { in } \mathcal{R}
\end{array}\right.
$$

- a substitution σ such that $\left.s\right|_{p}=I \sigma$

Definition (narrowing)

$$
\left\{\begin{array}{l}
\text { - a nonvariable position } p \text { of } s \\
\text { - a variant } R=(I \rightarrow r) \text { of a rule in } \mathcal{R} \\
\text { - a substitution } \sigma \text { such that }\left.s\right|_{p} \sigma=I \sigma \\
{\left[\sigma=\operatorname{mgu}\left(\left.s\right|_{p}, I\right)\right]}
\end{array}\right.
$$

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

termination of rewriting

Why?

- many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approaches

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the termination of rewriting

Why?

- many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approachess • \&

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the termination of rewriting

Why?

- many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approaches

Termination of narrowing

The termination problem

- given a TRS, are all possible narrowing derivations finite?

Too strong!

In this work

- given a TRS \mathcal{R} and a set of terms T
are all possible narrowing derivations $t_{1} \leadsto t_{2} \leadsto \ldots$ for $t_{1} \in T$ finite?
(in symbols: T is $\sim_{\mathcal{R}}$-terminating)

For instance, $\{\operatorname{add}(s, t) \mid s$ is ground $\}$ is $\sim \mathcal{R}$-terminating

Termination of narrowing

The termination problem

- given a TRS, are all possible narrowing derivations finite?

Too strong!

$$
\operatorname{add}(x, y) \leadsto_{R_{2},\left\{x \mapsto \mathrm{~s}\left(x^{\prime}\right)\right\}} \operatorname{add}\left(x^{\prime}, y\right) \sim_{R_{2},\left\{x^{\prime} \mapsto \mathrm{s}\left(x^{\prime \prime}\right)\right\}} \cdots
$$

In this work

- given a TRS \mathcal{R} and a set of terms T,
are all possible narrowing derivations $t_{1} \leadsto t_{2} \leadsto \ldots$ for $t_{1} \in T$ finite?
(in symbols: T is $\sim_{\mathcal{R}}$-terminating)

For instance, $\{\operatorname{add}(s, t) \mid s$ is ground $\}$ is $\sim \mathcal{R}$-terminating

Termination of narrowing

The termination problem

- given a TRS, are all possible narrowing derivations finite?

Too strong!

$$
\operatorname{add}(x, y) \leadsto_{R_{2},\left\{x \mapsto s\left(x^{\prime}\right)\right\}} \operatorname{add}\left(x^{\prime}, y\right) \overbrace{R_{2},\left\{x^{\prime} \mapsto \mathrm{s}\left(x^{\prime \prime}\right)\right\}} \cdots
$$

In this work

- given a TRS \mathcal{R} and a set of terms T, are all possible narrowing derivations $t_{1} \leadsto t_{2} \leadsto \ldots$ for $t_{1} \in T$ finite? (in symbols: T is $\sim_{\mathcal{R}}$-terminating)

For instance, $\{\operatorname{add}(s, t) \mid s$ is ground $\}$ is $\sim_{\mathcal{R}}$-terminating

Termination of narrowing via termination of rewriting

```
Theorem
\(T\) is \(\sim_{\mathcal{R}}\)-terminating
if \(\left\{t \sigma \mid t \in T\right.\) and \(t \sim_{\sigma}^{*} s\) in \(\left.\mathcal{R}\right\}\) is finite and \(\rightarrow_{\mathcal{R}}\)-terminating
```

Drawbacks:

- verv difficult to approximate
- sufficient but not necessary:

The set $\{f(x)\}$ is $\leadsto \mathcal{R}$-terminating
but $\{f(a)\}$ is finite but not $\rightarrow \mathcal{R}^{\text {-terminating }}$.
$f(a) \rightarrow f(a) \longrightarrow f(a)$

Termination of narrowing via termination of rewriting

```
Theorem
\(T\) is \(\sim_{\mathcal{R}}\)-terminating
if \(\left\{t \sigma \mid t \in T\right.\) and \(t \sim_{\sigma}^{*} s\) in \(\left.\mathcal{R}\right\}\) is finite and \(\rightarrow_{\mathcal{R}}\)-terminating
```


Drawbacks:

- very difficult to approximate
- sufficient but not necessary

The set $\{f(x)\}$ is $\leadsto \mathcal{R}$-terminating
but $\{f(a)\}$ is finite but not $\rightarrow \mathcal{R}^{\text {-terminating }}$.
\square

Termination of narrowing via termination of rewriting

Theorem

T is $\neg_{\mathcal{R}}$-terminating
if $\left\{t \sigma \mid t \in T\right.$ and $\left.t \sim_{\sigma}^{*} \sin \mathcal{R}\right\}$ is finite and $\rightarrow \mathcal{R}_{\mathcal{R}}$-terminating

Drawbacks:

- very difficult to approximate
- sufficient but not necessary:

$$
\begin{aligned}
\mathrm{f}(\mathrm{a}) & \rightarrow \mathrm{b} \\
\mathrm{a} & \rightarrow \mathrm{a}
\end{aligned}
$$

The set $\{f(x)\}$ is $\sim_{\mathcal{R}}$-terminating but $\{f(a)\}$ is finite but not $\rightarrow_{\mathcal{R}}$-terminating:

$$
f(a) \rightarrow f(a) \rightarrow f(a) \rightarrow \ldots
$$

A first solution

Variables in narrowing can be seen as generators of possibly infinite terms
Therefore $\left\{t \sigma \mid t \in T\right.$ and $t \sim_{\sigma}^{*} s$ in $\left.\mathcal{R}\right\}$ \Downarrow
$\{t \sigma \mid t \in T$ and σ maps variables to possibly infinite terms $\}$

Example

- $\operatorname{add}(x, z)$ is $\rightarrow_{\mathcal{R}}$-terminating for any σ mapping x to a finite term
- however, if σ mans x to an infinite term of the form $s(s(\ldots))$, then the derivation for $\operatorname{add}(x, z) \sigma$ is now infinite:
$\operatorname{add}(s(s(\ldots)), z) \rightarrow_{\mathcal{R}} s(\operatorname{add}(s(s(\ldots)), z)) \rightarrow_{\mathcal{R}}$

A first solution

Variables in narrowing can be seen as generators of possibly infinite terms
Therefore

$$
\left\{t \sigma \mid t \in T \text { and } t \sim_{\sigma}^{*} s \text { in } \mathcal{R}\right\}
$$

\Downarrow
$\{t \sigma \mid t \in T$ and σ maps variables to possibly infinite terms $\}$

Example

$$
\begin{align*}
\operatorname{add}(\mathrm{z}, y) & \rightarrow y \\
\operatorname{add}(\mathrm{~s}(x), y) & \rightarrow \mathrm{s}(\operatorname{add}(x, y)) \tag{2}
\end{align*}
$$

$$
\left(R_{1}\right)
$$

- $\operatorname{add}(x, z)$ is $\rightarrow_{\mathcal{R}}$-terminating for any σ mapping x to a finite term
- however, if σ maps x to an infinite term of the form $\mathrm{s}(\mathrm{s}(\ldots))$, then the derivation for $\operatorname{add}(x, z) \sigma$ is now infinite:

$$
\operatorname{add}(\mathrm{s}(\mathrm{~s}(\ldots)), \mathrm{z}) \rightarrow_{\mathcal{R}} \mathrm{s}(\operatorname{add}(\mathrm{~s}(\mathrm{~s}(\ldots)), \mathrm{z})) \rightarrow_{\mathcal{R}} \ldots
$$

Problem

proving that the set
$\{t \sigma \mid t \in T$ and σ maps variables to possibly infinite terms $\}$ is $\rightarrow_{\mathcal{R}}$-terminating is often too strong. . .

Example Given the TRS

$\mathrm{f}(x)$ is clearly $\sim_{\mathcal{R}}$-terminating
but $\exists \sigma$ such that $\mathrm{f}(x) \sigma$ is not \rightarrow_{R}-terminating

\square
\Rightarrow an infinite computation $\mathrm{f}(\mathrm{a}) \rightarrow_{\mathcal{R}} \mathrm{f}(\mathrm{a})$

Problem

proving that the set
$\{t \sigma \mid t \in T$ and σ maps variables to possibly infinite terms $\}$
is $\rightarrow_{\mathcal{R}}$-terminating is often too strong. . .

Example Given the TRS

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{a} \\
\mathrm{f}(x) & \rightarrow x
\end{aligned}
$$

$\mathrm{f}(x)$ is clearly $\sim_{\mathcal{R}}$-terminating

Problem

proving that the set
$\{t \sigma \mid t \in T$ and σ maps variables to possibly infinite terms $\}$ is $\rightarrow_{\mathcal{R}}$-terminating is often too strong. . .

Example Given the TRS

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{x}) & \rightarrow x
\end{aligned}
$$

$\mathrm{f}(x)$ is clearly $\sim_{\mathcal{R}}$-terminating but $\exists \sigma$ such that $\mathrm{f}(x) \sigma$ is not $\rightarrow_{\mathcal{R}}$-terminating (e.g., $\sigma=\{x \mapsto a\}$)
\Rightarrow an infinite computation $\mathrm{f}(\mathrm{a}) \rightarrow_{\mathcal{R}} \mathrm{f}(\mathrm{a}) \rightarrow_{\mathcal{R}} \ldots$ is introduced by σ !!

A second solution

\Rightarrow forbid the reduction of redexes introduced by $\sigma \ldots$

A second problem...

this restriction makes the condition unsound!

Example Given the TRS

- $\mathrm{c}(y, f(y)) \sigma$ is $\rightarrow_{\mathcal{R}}$-terminating if the reduction of the terms introduced by σ is forbidden
- but $\mathrm{c}(y, f(y))$ is not $\leadsto \mathcal{R}^{\text {-terminating!! }}$

A second solution

\Rightarrow forbid the reduction of redexes introduced by $\sigma \ldots$

A second problem...

... this restriction makes the condition unsound!

Example

 Given the TRS- $\mathrm{c}(y, \mathrm{f}(y)) \sigma$ is $\rightarrow_{\mathcal{R}}$-terminating if the reduction of the terms introduced by σ is forbidden
- but $\mathrm{c}(y, f(y))$ is not $\leadsto \mathcal{R}^{\text {-terminating!! }}$

A second solution

\Rightarrow forbid the reduction of redexes introduced by $\sigma \ldots$

A second problem...

... this restriction makes the condition unsound!

Example Given the TRS

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{a}) & \rightarrow \mathrm{c}(\mathrm{~b}, \mathrm{~b})
\end{aligned}
$$

- $\mathrm{c}(y, \mathrm{f}(y)) \sigma$ is $\rightarrow_{\mathcal{R}}$-terminating if the reduction of the terms introduced by σ is forbidden
- but $\mathrm{c}(y, \mathrm{f}(y))$ is not $\leadsto \mathcal{R}$-terminating!

A second solution

\Rightarrow forbid the reduction of redexes introduced by $\sigma \ldots$

A second problem...

... this restriction makes the condition unsound!

Example Given the TRS

$$
\begin{aligned}
\mathrm{a} & \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{a}) & \rightarrow \mathrm{c}(\mathrm{~b}, \mathrm{~b})
\end{aligned}
$$

- $\mathrm{c}(y, \mathrm{f}(y)) \sigma$ is $\rightarrow_{\mathcal{R}}$-terminating if the reduction of the terms introduced by σ is forbidden
- but $\mathrm{c}(y, \mathrm{f}(y))$ is not $\sim_{\mathcal{R}}$-terminating!!

$$
\text { (e.g., } \left.\mathrm{c}(y, \mathrm{f}(y)) \leadsto\{y \mapsto \mathrm{a}\} \mathrm{c}(\mathrm{a}, \mathrm{c}(\mathrm{~b}, \mathrm{~b})) \leadsto_{i d} \mathrm{C}(\mathrm{a}, \mathrm{c}(\mathrm{~b}, \mathrm{~b})) \leadsto i d \ldots\right)
$$

Last Solution

\Rightarrow consider narrowing derivations where terms introduced by instantiation cannot be narrowed!

For instance,

- (innermost) basic narrowing over arbitrary TRSs
- lazy and needed narrowing over left-linear constructor TRSs
- ...

Any narrowing strategy over left-linear constructor TRSs can only introduce constructor substitutions

Termination of narrowing via termination of rewriting

In the following, we consider left-linear constructor TRSs:

$$
\begin{aligned}
f_{1}\left(t_{11}, \ldots, t_{1 m_{1}}\right) & \rightarrow r_{1} \\
& \cdots \\
f_{n}\left(t_{n 1}, \ldots, t_{n m_{n}}\right) & \rightarrow r_{n}
\end{aligned}
$$

with

- $f_{i}\left(t_{i 1}, \ldots, t_{i n_{i}}\right)$ linear (no multiple occurrences of the same variable)
- $t_{i 1}, \ldots, t_{i n_{i}}$ constructor terms (no occurrence of f_{1}, \ldots, f_{n})

Our approach we replace variables by "data generators" that only produce (ground) constructor terms

Data generators [Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS \mathcal{R}, we define $\mathcal{R}_{\text {gen }}$ as \mathcal{R} augmented with

$$
\operatorname{gen} \rightarrow c(\overbrace{\text { gen }, \ldots, \text { gen }}^{n \text { times }})
$$

E.g., for $\mathcal{C}=\{\mathrm{z} / 0, \mathrm{~s} / 1\}$, we have

Some notation: $\widehat{t}=t \sigma$, with $\sigma=\{x \mapsto \operatorname{gen} \mid x \in \mathcal{V} \operatorname{ar}(t)\}$

Data generators [Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS \mathcal{R}, we define $\mathcal{R}_{\text {gen }}$ as \mathcal{R} augmented with

$$
\text { gen } \rightarrow c(\overbrace{\operatorname{gen}, \ldots, \operatorname{gen}}^{n \text { times }})
$$

E.g., for $\mathcal{C}=\{\mathrm{z} / 0, \mathrm{~s} / 1\}$, we have

$$
\mathcal{R}_{\text {gen }}=\mathcal{R} \cup\left\{\begin{array}{lll}
\text { gen } & \rightarrow & \mathrm{z} \\
\text { gen } & \rightarrow & \mathrm{s}(\text { gen })
\end{array}\right\}
$$

Some notation: $\hat{t}=t \sigma$, with $\sigma=\{x \mapsto \operatorname{gen} \mid x \in \mathcal{V} \operatorname{ar}(t)\}$

Data generators [Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS \mathcal{R}, we define $\mathcal{R}_{\text {gen }}$ as \mathcal{R} augmented with

$$
\text { gen } \rightarrow c(\overbrace{\operatorname{gen}, \ldots, \operatorname{gen}}^{n \text { times }})
$$

E.g., for $\mathcal{C}=\{\mathrm{z} / 0, \mathrm{~s} / 1\}$, we have

$$
\mathcal{R}_{\text {gen }}=\mathcal{R} \cup\left\{\begin{array}{lll}
\text { gen } & \rightarrow & \mathrm{z} \\
\text { gen } & \rightarrow & \mathrm{s}(\text { gen })
\end{array}\right\}
$$

Some notation: $\widehat{t}=t \sigma$, with $\sigma=\{x \mapsto$ gen $\mid x \in \mathcal{V} \operatorname{ar}(t)\}$

Correctness of data generators [Antoy, Hanus 2006]

Completeness

$$
\text { If } s \leadsto_{\sigma} t \text { in } \mathcal{R} \quad \text { then } \widehat{s} \rightarrow_{\text {gen }}^{*} \widehat{s \sigma} \rightarrow \widehat{t} \text { in } \mathcal{R}_{\text {gen }}
$$

Generally unsound

E.g., add(gen, gen) $\rightarrow \operatorname{add}(z$, gen $) \rightarrow$ gen $\rightarrow s($ gen $) \rightarrow s(z)$
but

$$
\begin{aligned}
& \operatorname{add}(x, x) \leadsto\{x \mapsto z\} \\
& \operatorname{add}(x, x) \leadsto\left\{x \mapsto s\left(x^{\prime}\right)\right\} \mathrm{s}\left(\operatorname{add}\left(x^{\prime}, \mathrm{s}\left(x^{\prime}\right)\right)\right) \leadsto\left\{x^{\prime} \mapsto \mathrm{z}\right\} \\
& \mathrm{s}(\mathrm{~s}(\mathrm{z}))
\end{aligned}
$$

Soundness is preserved for admissible derivations

- a derivation is admissible iff all the occurrences of gen originating from the replacement of the same variable are reduced to the same term

What about termination in $\mathcal{R}_{\text {gen }}$?

Clearly, no term with occurrences of gen terminates!
Fortunately, relative termination of $\mathcal{R}_{\text {gen }}$ suffices:

- T is relatively $\mathcal{R}_{\text {gen }}$-terminating to \mathcal{R} if every derivation $t_{1} \rightarrow t_{2}$ for $t_{1} \in T$ contains finitely many $\rightarrow_{\mathcal{R}}$ steps

```
Theorem (termination of narrowing via termination of rewriting)
Let }\mathcal{R}\mathrm{ be a left-linear constructor TRS
T}\mathrm{ is }~~\mathrm{ R-terminating
    is relatively }\mp@subsup{->}{\mp@subsup{\mathcal{R}}{\mathrm{ gen }}{}}{}\mathrm{ -terminating to }\mathcal{R
```


What about termination in $\mathcal{R}_{\text {gen }}$?

Clearly, no term with occurrences of gen terminates!
Fortunately, relative termination of $\mathcal{R}_{\text {gen }}$ suffices:

- T is relatively $\mathcal{R}_{\text {gen-terminating }}$ to \mathcal{R} if every derivation $t_{1} \rightarrow t_{2} \ldots$ for $t_{1} \in T$ contains finitely many $\rightarrow_{\mathcal{R}}$ steps

What about termination in $\mathcal{R}_{\text {gen }}$?

Clearly, no term with occurrences of gen terminates!
Fortunately, relative termination of $\mathcal{R}_{\text {gen }}$ suffices:

- T is relatively $\mathcal{R}_{\text {gen-terminating }}$ to \mathcal{R} if every derivation $t_{1} \rightarrow t_{2} \ldots$ for $t_{1} \in T$ contains finitely many $\rightarrow_{\mathcal{R}}$ steps

```
Theorem (termination of narrowing via termination of rewriting)
Let }\mathcal{R}\mathrm{ be a left-linear constructor TRS
T is }\mp@subsup{~}{\mathcal{R}}{}\mathrm{ -terminating
iff
T}\mathrm{ is relatively }\mp@subsup{->}{\mp@subsup{\mathcal{R}}{\mathrm{ gen }}{}}{}\mathrm{ -terminating to }\mathcal{R
```


Proving termination automatically

The problem

Given \mathcal{R} and T,
T is $\sim_{\mathcal{R}}$-terminating if \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., $\operatorname{add}(g, v)$ denotes the set of terms $\operatorname{add}\left(t_{1}, t_{2}\right)$ with - t_{1} (definitely) ground - t_{2} (possibly) variable
- concretization funcion e.g., $\gamma(\operatorname{add}(g, v))=\{\operatorname{add}(z, x), \operatorname{add}(z, z), \operatorname{add}(s(z), x), \operatorname{add}(s(z), z)$

Proving termination automatically

The problem

Given \mathcal{R} and T,
T is $\sim_{\mathcal{R}}$-terminating if \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., add (g, v) denotes the set of terms add $\left(t_{1}, t_{2}\right)$ with - t_{1} (definitely) ground - t_{2} (possibly) variable
- concretization funcion

Proving termination automatically

The problem

Given \mathcal{R} and T,
T is $\sim_{\mathcal{R}}$-terminating if \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., $\operatorname{add}(g, v)$ denotes the set of terms $\operatorname{add}\left(t_{1}, t_{2}\right)$ with
- t_{1} (definitely) ground
- t_{2} (possibly) variable
- concretization funcion γ,
e.g., $\gamma(\operatorname{add}(g, v))=\{\operatorname{add}(z, x), \operatorname{add}(z, z), \operatorname{add}(s(z), x), \operatorname{add}(s(z), z), \ldots\}$

Proving termination automatically

The problem (revised)

Given \mathcal{R} and t^{α},
$\gamma\left(t^{\alpha}\right)$ is $\sim_{\mathcal{R}}$-terminating if $\widehat{\gamma\left(t^{\alpha}\right)}$ is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- checking relative termination requires non-standard techniques

Solution: use argument filterings

- to filter away non-ground arguments of terms (equivalently, to filter away occurrences of gen)

Proving termination automatically

The problem (revised)

Given \mathcal{R} and t^{α},
$\gamma\left(t^{\alpha}\right)$ is $\sim_{\mathcal{R}}$-terminating if $\widehat{\gamma\left(t^{\alpha}\right)}$ is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- checking relative termination requires non-standard techniques

Solution: use argument filterings

- to filter away non-ground arguments of terms (equivalently, to filter away occurrences of gen)

Proving termination automatically

The problem (revised)

Given \mathcal{R} and t^{α},
$\gamma\left(t^{\alpha}\right)$ is $\sim_{\mathcal{R}}$-terminating if $\widehat{\gamma\left(t^{\alpha}\right)}$ is relatively $\rightarrow_{\mathcal{R}_{\text {gen }}}$-terminating to \mathcal{R}

Drawback

- checking relative termination requires non-standard techniques

Solution: use argument filterings

- to filter away non-ground arguments of terms
(equivalently, to filter away occurrences of gen)

Argument filterings [Kusakari, Nakamura, Toyama 1999]

$\pi(\mathrm{f}) \subseteq\{1, \ldots, n\}$ for every defined function f / n

Argument filterings over terms \& TRSs:

$$
\begin{gathered}
\pi(t)= \begin{cases}x & \text { if } t=x \\
\mathrm{c}\left(\pi\left(t_{1}\right), \ldots, \pi\left(t_{n}\right)\right) & \text { if } t=\mathrm{c}\left(t_{1}, \ldots, t_{n}\right) \\
\mathrm{f}\left(\pi\left(t_{i_{1}}\right), \ldots, \pi\left(t_{i_{m}}\right)\right) & \text { if } t=\mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \text { and } \pi(\mathrm{f})=\left\{i_{1}, \ldots, i_{m}\right\} \\
\pi(I \rightarrow r)=\pi(I) \rightarrow \pi_{\text {rhs }}(r)\end{cases}
\end{gathered}
$$

where $\pi_{\text {rhs }} \approx \pi$ but replaces some extra-variables by a fresh constant \perp

Argument filterings [Kusakari, Nakamura, Toyama 1999]

$\pi(\mathrm{f}) \subseteq\{1, \ldots, n\}$ for every defined function f / n

Argument filterings over terms \& TRSs:

$$
\begin{gathered}
\pi(t)= \begin{cases}x & \text { if } t=x \\
\mathrm{c}\left(\pi\left(t_{1}\right), \ldots, \pi\left(t_{n}\right)\right) & \text { if } t=\mathrm{c}\left(t_{1}, \ldots, t_{n}\right) \\
\mathrm{f}\left(\pi\left(t_{i_{1}}\right), \ldots, \pi\left(t_{i_{m}}\right)\right) & \text { if } t=\mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \text { and } \pi(\mathrm{f})=\left\{i_{1}, \ldots, i_{m}\right\} \\
\pi(I \rightarrow r)=\pi(I) \rightarrow \pi_{\text {rhs }}(r)\end{cases}
\end{gathered}
$$

where $\pi_{\text {rhs }} \approx \pi$ but replaces some extra-variables by a fresh constant \perp
From t^{α} we infer a safe argument filtering π for t^{α}

- $\pi\left(t^{\alpha}\right)=\mathrm{f}(g, g, \ldots, g)$
- for all $s \leadsto t$, if $\pi\left(\left.s\right|_{p}\right)$ are ground then $\pi\left(\left.t\right|_{q}\right)$ are ground too

Proving termination automatically: approaches

A direct approach

- based on dependency pairs [Arts, Giesl 2000]
- only a slight extension needed

A transformational approach

- based on argument filtering transformation [Kusakari, Nakamura, Toyama 1999]
- no significant extension required

Dependency pairs approach

Dependency pairs $D P(\mathcal{R})$ of a TRS \mathcal{R}

$$
\left.\begin{array}{rl}
D P(\mathcal{R})=\left\{F\left(s_{1}, \ldots, s_{n}\right) \rightarrow G\left(t_{1}, \ldots, t_{m}\right) \mid\right. & f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r \in \mathcal{R} \\
\left.r\right|_{p}=g\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right\}
$$

where F, G are tuple symbols

Example

Dependency pairs approach

Dependency pairs $D P(\mathcal{R})$ of a TRS \mathcal{R}

$$
\left.\begin{array}{rl}
D P(\mathcal{R})=\left\{F\left(s_{1}, \ldots, s_{n}\right) \rightarrow G\left(t_{1}, \ldots, t_{m}\right) \mid\right. & f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r \in \mathcal{R} \\
\left.r\right|_{p}=g\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right\}
$$

where F, G are tuple symbols

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil }, y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \text { append }(x s, y)) \\
\operatorname{reverse}(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{append}(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

Dependency pairs approach

Dependency pairs $D P(\mathcal{R})$ of a TRS \mathcal{R}

$$
\left.\begin{array}{rl}
D P(\mathcal{R})=\left\{F\left(s_{1}, \ldots, s_{n}\right) \rightarrow G\left(t_{1}, \ldots, t_{m}\right) \mid\right. & f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r \in \mathcal{R} \\
\left.r\right|_{p}=g\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right\}
$$

where F, G are tuple symbols

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil }, y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \text { append }(x s, y)) \\
\operatorname{reverse}(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{append}(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

$\operatorname{APPEND}(\operatorname{cons}(x, x s), y) \rightarrow \operatorname{APPEND}(x s, y)$
REVERSE(cons($x, x s$)) \rightarrow APPEND(reverse($x s$), cons(x, nil))

Dependency pairs approach

Dependency pairs $D P(\mathcal{R})$ of a TRS \mathcal{R}

$$
\left.\begin{array}{rl}
D P(\mathcal{R})=\left\{F\left(s_{1}, \ldots, s_{n}\right) \rightarrow G\left(t_{1}, \ldots, t_{m}\right) \mid\right. & f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r \in \mathcal{R} \\
\left.r\right|_{p}=g\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right\}
$$

where F, G are tuple symbols

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil }, y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \operatorname{append}(x s, y)) \\
\operatorname{reverse}(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{append}(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

> APPEND (cons $(x, x s), y) \rightarrow \operatorname{APPEND}(x s, y)$ REVERSE(cons $(x, x s)) \rightarrow \operatorname{REVERSE}(x s)$

Dependency pairs approach

Dependency pairs $D P(\mathcal{R})$ of a TRS \mathcal{R}

$$
\left.\begin{array}{rl}
D P(\mathcal{R})=\left\{F\left(s_{1}, \ldots, s_{n}\right) \rightarrow G\left(t_{1}, \ldots, t_{m}\right) \mid\right. & f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r \in \mathcal{R} \\
\left.r\right|_{p}=g\left(t_{1}, \ldots, t_{m}\right)
\end{array}\right\}
$$

where F, G are tuple symbols

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil }, y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \text { append }(x s, y)) \\
\operatorname{reverse}(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{append}(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

> $\operatorname{APPEND}(\operatorname{cons}(x, x s), y) \rightarrow \operatorname{APPEND}(x s, y)$
> REVERSE $(\operatorname{cons}(x, x s)) \rightarrow \operatorname{REVERSE}(x s)$
> REVERSE $(\operatorname{cons}(x, x s)) \rightarrow$ APPEND (reverse $(x s), \operatorname{cons}(x$, nil) $)$

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs $s_{1} \rightarrow t_{1}, s_{2} \rightarrow t_{2}, \ldots$ from $D P(\mathcal{R})$ is a $(D P(\mathcal{R}), \mathcal{R}, \pi)$-chain if

- \exists (constructor) substitution σ such that $\widehat{t_{i} \sigma} \rightarrow_{\mathcal{R}_{\text {gen }}}^{*} \widehat{s_{i+1} \sigma}$ for $i \geqslant 1$
- $\pi\left(\widehat{s_{i} \sigma}\right), \pi\left(\widehat{t_{i} \sigma}\right)$ contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

- it is parameterized by π
- variables are replaced by gen and reductions w.r.t. $\mathcal{R}_{\text {gen }}$
- π should filter away all occurrences of gen

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs $s_{1} \rightarrow t_{1}, s_{2} \rightarrow t_{2}, \ldots$ from $D P(\mathcal{R})$ is a $(D P(\mathcal{R}), \mathcal{R}, \pi)$-chain if

- \exists (constructor) substitution σ such that $\widehat{t_{i} \sigma} \rightarrow_{\mathcal{R}_{\text {gen }}}^{*} \widehat{s_{i+1} \sigma}$ for $i \geqslant 1$
- $\pi\left(\widehat{s_{i} \sigma}\right), \pi\left(\widehat{t_{i} \sigma}\right)$ contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

- it is parameterized by π
- variables are replaced by gen and reductions w.r.t. $\mathcal{R}_{\text {gen }}$
- π should filter away all occurrences of gen

Example

Given the dependency pair

$$
\begin{equation*}
\operatorname{APPEND}(\operatorname{cons}(x, x s), y) \rightarrow \operatorname{APPEND}(x s, y) \tag{1}
\end{equation*}
$$

we have an infinite $(D P(\mathcal{R}), \mathcal{R}, \pi)$-chain, (1),(1),..., for

$$
\pi(\text { append })=\pi(\text { APPEND })=\{2\}
$$

since there exists $\sigma=\{y \mapsto$ nil $\}$ such that

where $\pi(\operatorname{APPEND}($ gen, nil $))=\pi(\operatorname{APPEND}(\operatorname{cons}($ gen, gen $)$, nil $)) \in \mathcal{T}(\mathcal{F})$
(not a chain in the standard framework of rewriting)

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} If there is no infinite $(D P(\mathcal{R}), \mathcal{R}, \pi)$-chain, then $\gamma\left(t^{\alpha}\right)$ is $\leadsto \mathcal{R}$-terminating

Now, we could follow the standard dependency pair framework. . .

Argument filtering processor

E.g., we prove the soundness of transforming the DP problem

$$
(D P(\mathcal{R}), \mathcal{R}, \pi) \quad \Longrightarrow \quad(\pi(D P(\mathcal{R})), \pi(\mathcal{R}), i d)
$$

where $\operatorname{id}(\mathrm{f})=\{1, \ldots, n\}$ for all f / n occurring in $\pi(\mathcal{R})$

Therefore,

- all DP processors [GTSKF06] for proving the termination of rewriting can also be used for proving the termination of narrowing

Example

$$
\begin{aligned}
& t^{\alpha}=\text { append }(g, v) \\
& \pi=\{\text { append } \mapsto\{1\}, \text { reverse } \mapsto\{1\}\}
\end{aligned}
$$

The argument filtering processor returns:

Dependency pairs:

$$
\begin{aligned}
& \left\{\begin{aligned}
\operatorname{APPEND}(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{APPEND}(x s) \\
\operatorname{REVERSE}(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{REVERSE}(x s) \\
\operatorname{REVERSE}(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{APPEND}(\text { reverse }(x s))
\end{aligned}\right. \\
& \left\{\begin{aligned}
\operatorname{append}(\text { nil }) & \rightarrow \perp \\
\operatorname{append}(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{cons}(x, \text { append }(x s)) \\
\text { reverse }(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \text { append(reverse }(x s))
\end{aligned}\right.
\end{aligned}
$$

Argument filtering: $\quad i d=\{$ append $\mapsto\{1\}$, reverse $\mapsto\{1\}\}$

A transformational approach

Our aim

- transform the original TRS \mathcal{R} into a new TRS \mathcal{R}^{\prime}
- narrowing terminates in \mathcal{R} if rewriting terminates in \mathcal{R}^{\prime}

Hence any termination technique for rewrite systems can be used to prove the termination of narrowing

Our transformation is a simplification of the argument filtering transformation (AFT) of [Kusakari, Nakamura, Toyama 1999]

The transformation $\mathrm{AFT}_{\pi}(\mathcal{R})$
for every rule $l \rightarrow r$ of the original rewrite system, produce

- a filtered rule $\pi(I) \rightarrow \pi_{\text {rhs }}(r)$ and
- an additional rule $\pi(I) \rightarrow \pi(t)$, for each subterm t of r that is filtered away in $\pi_{\text {rhs }}(r)$ and such that $\pi(t)$ is not a constructor term

A transformational approach

Our aim

- transform the original TRS \mathcal{R} into a new TRS \mathcal{R}^{\prime}
- narrowing terminates in \mathcal{R} if rewriting terminates in \mathcal{R}^{\prime}

Hence any termination technique for rewrite systems can be used to prove the termination of narrowing

Our transformation is a simplification of the argument filtering transformation (AFT) of [Kusakari, Nakamura, Toyama 1999]

The transformation $\mathrm{AFT}_{\pi}(\mathcal{R})$
for every rule $I \rightarrow r$ of the original rewrite system, produce

- a filtered rule $\pi(I) \rightarrow \pi_{r h s}(r)$ and
- an additional rule $\pi(I) \rightarrow \pi(t)$, for each subterm t of r that is filtered away in $\pi_{r h s}(r)$ and such that $\pi(t)$ is not a constructor term.

Main result

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} $\gamma\left(t^{\alpha}\right)$ is $\sim_{\mathcal{R}}$-terminating if $\operatorname{AFT}_{\pi}(\mathcal{R})$ is terminating

Therefore,

- $\mathrm{AFT}_{\pi}(\mathcal{R})$ can be analyzed using standard techniques and tools for proving the termination of TRSs
(no data generator is involved in the derivations of $\mathrm{AFT}_{\pi}(\mathcal{R})$)

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil, } y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \text { append }(x s, y)) \\
\text { reverse }(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \text { append }(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

$$
\begin{aligned}
& t^{\alpha}=\text { append }(g, v) \\
& \pi=\{\text { append } \mapsto\{1\}, \text { reverse } \mapsto\{1\}\}
\end{aligned}
$$

The transformation $\mathrm{AFT}_{\pi}(\mathcal{R})$ returns

$$
\begin{aligned}
\text { append }(\text { nil }) & \rightarrow y \quad(y \text { is an extra variable }) \\
\text { append }(\operatorname{cons}(x, x s)) & \rightarrow \operatorname{cons}(x, \text { append }(x s)) \\
\text { reverse }(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \text { append }(\text { reverse }(x s))
\end{aligned}
$$

which is clearly not terminating

Example

$$
\begin{aligned}
\operatorname{append}(\text { nil, } y) & \rightarrow y \\
\text { append }(\operatorname{cons}(x, x s), y) & \rightarrow \operatorname{cons}(x, \text { append }(x s, y)) \\
\text { reverse }(\text { nil }) & \rightarrow \text { nil } \\
\text { reverse }(\operatorname{cons}(x, x s)) & \rightarrow \text { append }(\text { reverse }(x s), \operatorname{cons}(x, \text { nil }))
\end{aligned}
$$

$$
\begin{aligned}
& t^{\alpha}=\text { append }(g, v) \\
& \pi=\{\text { append } \mapsto\{1\}, \text { reverse } \mapsto\{1\}\}
\end{aligned}
$$

The transformation $\mathrm{AFT}_{\pi}(\mathcal{R})$ returns

```
        append(nil) -> & \perp ( }\perp\mathrm{ is a fresh constant)
append(cons(x,xs)) }->\mathrm{ cons( }x\mathrm{ , append(xs))
reverse(nil) }->\mathrm{ nil
reverse(cons(x,xs)) }->\mathrm{ append(reverse(xs))
```

which is clearly not terminating

The termination tool TNT

It takes as input

- a left-linear constructor TRS
- an abstract term
and proceeds as follows:
- infers a safe argument filtering for the abstract term
(a binding-time analysis)
- returns a transformed TRS using AFT_{π}

Website: http://german.dsic.upv.es/filtering.html
The termination of the transformed TRS can be checked with APROVE

[DEMO]

Inference of safe argument filterings

We have adapted a simple binding-time analysis

- binding-times: definitevely ground / possibly variable

$$
\begin{gathered}
g \sqcup g=g \quad g \sqcup v=v \quad v \sqcup g=v \quad v \sqcup v=v \\
\begin{array}{c}
(g, v, g) \sqcup(g, g, v)=(g, v, v) \\
\{f \mapsto(g, v), g \mapsto(g, v)\} \sqcup\{f \mapsto(g, g), g \mapsto(v, g)\} \\
=\{f \mapsto(g, v), g \mapsto(v, v)\}
\end{array}
\end{gathered}
$$

- binding-time environment: a substitution mapping variables to binding-times
- division: a mapping $\mathrm{f} / n \mapsto\left(m_{1}, \ldots, m_{n}\right)$ for every defined function, where each m_{i} is a binding-time

Auxiliary functions

$$
\begin{aligned}
& B_{v}[[x]] \mathrm{g} / n \rho \quad=(\overbrace{g, \ldots, g}) \\
& \text { (if } x \in \mathcal{V} \text {) } \\
& B_{v}\left[\left[\mathrm{c}\left(t_{1}, \ldots, t_{n}\right)\right]\right] \mathrm{g} / n \rho=B_{v}\left[\left[t_{1}\right]\right] \mathrm{g} / n \rho \sqcup \ldots \sqcup B_{v}\left[\left[t_{n}\right]\right] \mathrm{g} / n \rho \\
& \text { (if } \mathrm{c} \in \mathcal{C} \text {) } \\
& B_{v}\left[\left[\mathrm{f}\left(t_{1}, \ldots, t_{n}\right)\right]\right] \mathrm{g} / n \rho=b t \sqcup\left(B_{e}\left[\left[t_{1}\right]\right] \rho, \ldots, B_{e}\left[\left[t_{n}\right]\right] \rho\right) \quad(\text { if } \mathrm{f}=\mathrm{g}, \mathrm{f} \in \mathcal{D}) \\
& \text { bt } \\
& \text { (if } \mathrm{f} \neq \mathrm{g}, \mathrm{f} \in \mathcal{D} \text {) } \\
& \text { where } b t=B_{v}\left[\left[t_{1}\right]\right] \mathrm{g} / n \rho \sqcup \ldots \sqcup B_{v}\left[\left[t_{n}\right]\right] \mathrm{g} / n \rho \\
& \begin{array}{ll}
B_{e}[[x]] \rho & =x \rho \\
B_{e}\left[\left[h\left(t_{1}, \ldots, t_{n}\right)\right]\right] \rho & =B_{e}\left[\left[t_{1}\right]\right] \rho \sqcup \ldots \sqcup B_{e}\left[\left[t_{n}\right]\right] \rho
\end{array} \\
& \text { (if } x \in \mathcal{V} \text {) } \\
& \text { (if } h \in \mathcal{C} \cup \mathcal{D} \text {) }
\end{aligned}
$$

Auxiliary functions

$$
\begin{array}{lrr}
B_{v}[[[]] \mathrm{g} / n \rho \quad= & (\overbrace{\mathrm{g}, \ldots, \mathrm{~g}}^{\mathrm{ntimes}}) & (\text { if } x \in \mathcal{V}) \\
B_{v}\left[\left[\left[\left(t_{1}, \ldots, t_{n}\right)\right]\right] \mathrm{g} / n \rho=B_{v}\left[\left[t_{1}\right]\right] \mathrm{g} / n \rho \sqcup \ldots \sqcup B_{v}\left[\left[\left[t_{n}\right]\right] \mathrm{g} / n \rho\right.\right. & (\text { if } \mathrm{c} \in \mathcal{C}) \\
B_{v}\left[\left[\mathrm{f}\left(t_{1}, \ldots, t_{n}\right)\right] \mathrm{g} / n \rho \rho=b t \sqcup\left(B_{e}\left[\left[t_{1}\right]\right] \rho, \ldots, B_{e}\left[\left[t_{n}\right]\right] \rho\right)\right. & (\text { if } \mathrm{f}=\mathrm{g}, \mathrm{f} \in \mathcal{D}) \\
& b t & \text { (if } \mathrm{f} \neq \mathrm{g}, \mathrm{f} \in \mathcal{D})
\end{array}
$$

Roughly speaking,

- ($\left.B_{v}[[t]] \mathrm{g} / n \rho\right)$ returns a sequence of n binding-times that denote the (lub of the) binding-times of the arguments of the calls to g / n that occur in t in the context of the binding-time environment ρ

Auxiliary functions

$$
\begin{array}{ll}
B_{e}[[x]] \rho & =x \rho \\
B_{e}\left[\left[h\left(t_{1}, \ldots, t_{n}\right)\right]\right] \rho & =B_{e}\left[\left[t_{1}\right]\right] \rho \sqcup \ldots \sqcup B_{e}\left[\left[t_{n}\right]\right] \rho
\end{array}
$$

(if $x \in \mathcal{V}$)
(if $h \in \mathcal{C} \cup \mathcal{D}$)

Roughly speaking,

- ($\left.B_{v}[[t]] \mathrm{g} / n \rho\right)$ returns a sequence of n binding-times that denote the (lub of the) binding-times of the arguments of the calls to g / n that occur in t in the context of the binding-time environment ρ
- ($\left.B_{e}[[t]] \rho\right)$ then returns g if t contains no variable which is bound to v in ρ, and v otherwise

BTA algorithm

Given an abstract term $f_{1}\left(m_{1}, \ldots, m_{n_{1}}\right)$, the initial division is

$$
\operatorname{div}_{0}=\left\{f_{1} \mapsto\left(m_{1}, \ldots, m_{n_{1}}\right), f_{2} \mapsto(g, \ldots, g), \ldots, f_{k} \mapsto(g, \ldots, g)\right\}
$$

where $\mathrm{f}_{1} / n_{1}, \ldots, \mathrm{f}_{k} / n_{k}$ are the defined functions of the TRS

Iterative process

$$
\begin{gathered}
\operatorname{div}_{i}=\left\{f_{1} \mapsto b_{1}, \ldots, f_{k} \mapsto b_{k}\right\} \\
\Downarrow \\
\operatorname{div}_{i+1}=\left\{\quad f_{1} \mapsto b_{1} \sqcup B_{v}\left[\left[r_{1}\right]\right] f_{1} / n_{1} e\left(b_{1}, l_{1}\right) \sqcup \ldots \sqcup B_{v}\left[\left[r_{j}\right]\right] f_{1} / n_{1} e\left(b_{j}, l_{j}\right),\right.
\end{gathered}
$$

where $I_{1} \rightarrow r_{1}, \ldots, I_{j} \rightarrow r_{j}, j \geq k$, are the rules of the TRS

BTA algorithm

Given an abstract term $f_{1}\left(m_{1}, \ldots, m_{n_{1}}\right)$, the initial division is

$$
\operatorname{div}_{0}=\left\{f_{1} \mapsto\left(m_{1}, \ldots, m_{n_{1}}\right), f_{2} \mapsto(g, \ldots, g), \ldots, f_{k} \mapsto(g, \ldots, g)\right\}
$$

where $f_{1} / n_{1}, \ldots, f_{k} / n_{k}$ are the defined functions of the TRS

Iterative process

$$
\begin{aligned}
& \operatorname{div}_{i}=\left\{\mathrm{f}_{1} \mapsto b_{1}, \ldots, \mathrm{f}_{k} \mapsto b_{k}\right\} \\
& \operatorname{div}_{i+1}=\left\{\quad f_{1} \mapsto b_{1} \sqcup B_{v}\left[\left[r_{1}\right]\right] f_{1} / n_{1} e\left(b_{1}, l_{1}\right) \sqcup \ldots \sqcup B_{v}\left[\left[r_{j}\right]\right] f_{1} / n_{1} e\left(b_{j}, l_{j}\right),\right. \\
& \left.\mathrm{f}_{k} \mapsto b_{k} \sqcup B_{v}\left[\left[r_{1}\right]\right] \mathrm{f}_{k} / n_{k} e\left(b_{1}, l_{1}\right) \sqcup \ldots \sqcup B_{v}\left[\left[r_{j}\right]\right] \mathrm{f}_{k} / n_{k} e\left(b_{j}, l_{j}\right)\right\}
\end{aligned}
$$

where $I_{1} \rightarrow r_{1}, \ldots, I_{j} \rightarrow r_{j}, j \geq k$, are the rules of the TRS

$$
\begin{aligned}
e\left(\left(m_{1}, \ldots, m_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) & =\left\{x \mapsto m_{1} \mid x \in \operatorname{V} \operatorname{Var}\left(t_{1}\right)\right\} \\
\cup & \cdots \\
& \left.\cup x \mapsto m_{n} \mid x \in \operatorname{Var}\left(t_{n}\right)\right\}
\end{aligned}
$$

When $\operatorname{div}_{i}=\operatorname{div}_{i+1}$ (fixpoint), the corresponding safe argument filtering π is obtained as follows:

Given the division

$$
\operatorname{div}=\left\{f_{1} \mapsto\left(m_{1}^{1}, \ldots, m_{n_{1}}^{1}\right), \ldots, f_{k} \mapsto\left(m_{1}^{k}, \ldots, m_{n_{k}}^{k}\right)\right\}
$$

we have

$$
\pi(\operatorname{div})=\left\{f_{1} \mapsto\left\{i \mid m_{i}^{1}=g\right\}, \ldots, f_{k} \mapsto\left\{i \mid m_{i}^{k}=g\right\}\right\}
$$

$\pi($ div) is a safe argument filtering since the computed division div is congruent [JGS93]

Example

$$
\begin{aligned}
\operatorname{mult}(z, y) & \rightarrow \mathrm{z} \\
\operatorname{mult}(\mathrm{~s}(x), y) & \rightarrow \operatorname{add}(\operatorname{mult}(x, y), y)
\end{aligned} \quad \operatorname{add}(\mathrm{s}(x), y) \quad \rightarrow y .
$$

Given the abstract term mult (g, v), the associated initial division is

$$
\operatorname{div}_{0}=\{\text { mult } \mapsto(g, v), \text { add } \mapsto(g, g)\}
$$

The next division, divi, is obtained from the following expression: $\operatorname{div}_{1}=\left\{\right.$ mult $\mapsto(g, v) \quad \sqcup \quad B_{v}[[z]]$ mult $/ 2\{y \mapsto v\}$

Example

$$
\left.\begin{array}{rl}
\operatorname{mult}(z, y) & \rightarrow z \\
\operatorname{add}(z, y) & \rightarrow y \\
\operatorname{mult}(s(x), y) & \rightarrow \operatorname{add}(\operatorname{mult}(x, y), y) \quad \operatorname{add}(\mathrm{s}(x), y)
\end{array}\right) \quad \rightarrow \mathrm{s}(\operatorname{add}(x, y))
$$

Given the abstract term mult (g, v), the associated initial division is

$$
\operatorname{div}_{0}=\{\text { mult } \mapsto(g, v), \text { add } \mapsto(g, g)\}
$$

The next division, div_{1}, is obtained from the following expression:

$$
\begin{array}{lll}
\operatorname{div}_{1}=\{\text { mult } \mapsto(g, v) & \sqcup & B_{v}[[z]] \operatorname{mult} / 2\{y \mapsto v\} \\
& \sqcup & B_{v}[[\text { add }(\operatorname{mult}(x, y), y)]] \text { mult } / 2\{x \mapsto g, y \mapsto v\} \\
& \sqcup & B_{v}[[y]] \operatorname{mult} / 2\{y \mapsto g\} \\
& \sqcup & B_{v}[[s(\operatorname{add}(x, y))]] \text { mult } / 2\{x \mapsto g, y \mapsto g\}, \\
\text { add } \mapsto(g, g) & \sqcup & B_{v}[[z]] \operatorname{add} / 2\{y \mapsto v\} \\
& \sqcup & B_{v}[[\operatorname{add}(\operatorname{mult}(x, y), y)]] \text { add } / 2\{x \mapsto g, y \mapsto v\} \\
& \sqcup & B_{v}[[y]] \operatorname{add} / 2\{y \mapsto g\} \\
& \sqcup & B_{v}[[s(\operatorname{sdd}(x, y))]] \operatorname{add} / 2\{x \mapsto g, y \mapsto g\}
\end{array}
$$

Example (cont'd)

Therefore, by evaluating the calls to B_{v}, we get

$$
\operatorname{div}_{1}=\{\text { mult } \mapsto(g, v), \text { add } \mapsto(v, v)\}
$$

Note that the change in the binding-times of add comes from the evaluation of

$$
B_{v}[[\operatorname{add}(\operatorname{mult}(x, y), y)]] \operatorname{add} / 2\{x \mapsto g, y \mapsto v\}
$$

where a call to add appears
(and every argument contains at least one possibly unknown value)
\Rightarrow If we compute div_{2} we get $\operatorname{div}_{1}=\operatorname{div}_{2} \Longrightarrow \underline{d_{1}}$ is a fixpoint
From this division, the associated safe argument filtering is
\square

Example (cont'd)

Therefore, by evaluating the calls to B_{v}, we get

$$
\operatorname{div}_{1}=\{\text { mult } \mapsto(g, v), \text { add } \mapsto(v, v)\}
$$

Note that the change in the binding-times of add comes from the evaluation of

$$
B_{v}[[\operatorname{add}(\operatorname{mult}(x, y), y)]] \operatorname{add} / 2\{x \mapsto g, y \mapsto v\}
$$

where a call to add appears
(and every argument contains at least one possibly unknown value)
\Rightarrow If we compute $d i v_{2}$ we get $d i v_{1}=d i v_{2} \Longrightarrow d i v_{1}$ is a fixpoint
From this division, the associated safe argument filtering is

Example (cont'd)

Therefore, by evaluating the calls to B_{v}, we get

$$
\operatorname{div}_{1}=\{\text { mult } \mapsto(g, v), \text { add } \mapsto(v, v)\}
$$

Note that the change in the binding-times of add comes from the evaluation of

$$
B_{v}[[\operatorname{add}(\operatorname{mult}(x, y), y)]] \operatorname{add} / 2\{x \mapsto g, y \mapsto v\}
$$

where a call to add appears
(and every argument contains at least one possibly unknown value)
\Rightarrow If we compute $d i v_{2}$ we get $d i v_{1}=d i v_{2} \Longrightarrow d i v_{1}$ is a fixpoint
From this division, the associated safe argument filtering is

$$
\pi=\{\text { mult } \mapsto\{1\}, \text { add } \mapsto\{ \}\}
$$

Some refinements

Multiple abstract terms

Consider, e.g.,

$$
\begin{aligned}
\mathrm{eq}(\mathrm{z}, \mathrm{z}) & \rightarrow \text { true } \\
\mathrm{eq}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{eq}(x, y)
\end{aligned}
$$

and the set

$$
T^{\alpha}=\{\mathrm{eq}(g, v), \mathrm{eq}(v, g)\}
$$

Here, starting from

$$
\operatorname{div}_{0}=\{\text { eq } \mapsto(g, v) \sqcup(v, g)\}=\{\text { eq } \mapsto(v, v)\}
$$

is not a good idea ...

Solution

Lemma
Let \mathcal{R} be a TRS and T^{a} be a finite set of abstract terms. $\gamma\left(T^{\alpha}\right)$ is

Some refinements

Multiple abstract terms

Consider, e.g.,

$$
\begin{aligned}
\mathrm{eq}(\mathrm{z}, \mathrm{z}) & \rightarrow \text { true } \\
\mathrm{eq}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{eq}(x, y)
\end{aligned}
$$

and the set

$$
T^{\alpha}=\{\mathrm{eq}(g, v), \mathrm{eq}(v, g)\}
$$

Here, starting from

$$
\operatorname{div}_{0}=\{\text { eq } \mapsto(g, v) \sqcup(v, g)\}=\{\text { eq } \mapsto(v, v)\}
$$

is not a good idea ...

Solution

Lemma

Let \mathcal{R} be a TRS and T^{α} be a finite set of abstract terms. $\gamma\left(T^{\alpha}\right)$ is $\neg_{\mathcal{R}}$-terminating iff $\gamma\left(t^{\alpha}\right)$ is $\sim_{\mathcal{R}}$-terminating for all $t^{\alpha} \in T^{\alpha}$.

Some refinements (cont'd)

Non well-moded programs

Consider, e.g.,

$$
\begin{aligned}
\mathrm{eq}(\mathrm{z}, \mathrm{z}) & \rightarrow \text { true } \\
\mathrm{eq}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{eq}(y, x)
\end{aligned}
$$

If we start with

$$
\mathrm{eq}(g, v)
$$

the only safe argument filtering is

$$
\pi=\{\mathrm{eq} \mapsto\{ \}\}
$$

Solution)

Some refinements (cont'd)

Non well-moded programs

Consider, e.g.,

$$
\begin{aligned}
\mathrm{eq}(\mathrm{z}, \mathrm{z}) & \rightarrow \text { true } \\
\mathrm{eq}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{eq}(y, x)
\end{aligned}
$$

If we start with

$$
\mathrm{eq}(g, v)
$$

the only safe argument filtering is

$$
\pi=\{\mathrm{eq} \mapsto\{ \}\}
$$

Solution

$$
\begin{aligned}
& \mathrm{eq}_{g g}(\mathrm{z}, \mathrm{z}) \rightarrow \text { true } \\
& \mathrm{eq}_{g g}(\mathrm{~s}(x), \mathrm{s}(y)) \rightarrow \mathrm{eq}_{g g}(y, x) \\
& \mathrm{eq}_{\mathrm{vg}}(\mathrm{z}, \mathrm{z}) \rightarrow \text { true } \\
& \mathrm{eq}_{\mathrm{vg}}(\mathrm{~s}(x), \mathrm{s}(y)) \rightarrow \mathrm{eq}_{g v}(y, x) \\
& \mathrm{eq}_{g \mathrm{~g}}(\mathrm{z}, \mathrm{z}) \rightarrow \text { true } \\
& \mathrm{eq}_{g \mathrm{v}}(\mathrm{~s}(x), \mathrm{s}(y)) \rightarrow \mathrm{eq}_{\mathrm{vg}}(y, x) \\
& \mathrm{eq}_{v v}(\mathrm{z}, \mathrm{z}) \rightarrow \text { true } \\
& \mathrm{eq}_{v v}(\mathrm{~s}(x), \mathrm{s}(y)) \rightarrow \mathrm{eq}_{v v}(y, x)
\end{aligned}
$$

Some refinements (cont'd)

Removing non-reachable functions

Consider, e.g.,
$a \rightarrow a$
$b \rightarrow c$
$c \rightarrow d$

Although narrowing terminates for the abstract term b we get the argument filtering

$$
\pi=\{\mathrm{a} \mapsto\{ \}, \mathrm{b} \mapsto\{ \}, \mathrm{c} \mapsto\{ \}\}
$$

and hence we fail to prove its termination...

Solution

Remove function definitions not reachable from b (i.e., a \rightarrow a)

Some refinements (cont'd)

Removing non-reachable functions

Consider, e.g.,
$a \rightarrow c$
$b \rightarrow c$
$c \rightarrow d$

Although narrowing terminates for the abstract term b we get the argument filtering

$$
\pi=\{\mathrm{a} \mapsto\{ \}, \mathrm{b} \mapsto\{ \}, \mathrm{c} \mapsto\{ \}\}
$$

and hence we fail to prove its termination...

Solution

Remove function definitions not reachable from b (i.e., $a \rightarrow a$)

Related work

Schneider-Kamp et al [SKGST07] presented an automated termination analysis for logic programs:

- logic programs are first translated to TRSs
- logic variables are simulated by infinite terms

Main differences:

- data generators (reuse of results relating narrowing and rewriting)
- no transformational approach in [SKGST07]

Nishida and Miura [NM06] adapted the dependency pair method for proving the termination of narrowing:

- direct approach (not based on using generators \& rewriting)
- allow extra variables in TRSs
- not comparable

Conclusions

Conclusions

- new techniques for proving the termination of narrowing in left-linear constructor systems
- good potential for reusing existing techniques and tools for rewriting
- first tool for proving the termination of narrowing

Future work

- extension to deal with extra-variables
- application to (offline) partial evaluation

围 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving Dependency Pairs. Journal of Automated Reasoning, 37(3):155-203, 2006.
R.D. Jones, C.K. Gomard, and P. Sestoft.

Partial Evaluation and Automatic Program Generation.
Prentice-Hall, Englewood Cliffs, NJ, 1993.
N. Nishida and K. Miura.

Dependency Graph Method for Proving Termination of Narrowing. In Proc. of WST'06, pages 12-16, 2006.

戋 P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Termination Analysis for Logic Programs by Term Rewriting.
In Proc. of LOPSTR'06, pages 177-193. Springer LNCS 4407, 2007.

